eigen/Eigen/src/QR/ColPivotingHouseholderQR.h

419 lines
15 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
/** \ingroup QR_Module
* \nonstableyet
*
* \class ColPivotingHouseholderQR
*
* \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition using Householder transformations.
*
* This decomposition performs column pivoting in order to be rank-revealing and improve
* numerical stability. It is slower than HouseholderQR, and faster than FullPivotingHouseholderQR.
*
* \sa MatrixBase::colPivotingHouseholderQr()
*/
template<typename MatrixType> class ColPivotingHouseholderQR
{
public:
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
typedef Matrix<int, 1, ColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, RowsAtCompileTime, 1> IntColVectorType;
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
typedef Matrix<RealScalar, 1, ColsAtCompileTime> RealRowVectorType;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via ColPivotingHouseholderQR::compute(const MatrixType&).
*/
ColPivotingHouseholderQR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
ColPivotingHouseholderQR(const MatrixType& matrix)
: m_qr(matrix.rows(), matrix.cols()),
m_hCoeffs(std::min(matrix.rows(),matrix.cols())),
m_isInitialized(false)
{
compute(matrix);
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
* \returns \c true if a solution exists, \c false if no solution exists.
*
* \param b the right-hand-side of the equation to solve.
*
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
* Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
* If no solution exists, *result is left with undefined coefficients.
*
* \note The case where b is a matrix is not yet implemented. Also, this
* code is space inefficient.
*
* Example: \include ColPivotingHouseholderQR_solve.cpp
* Output: \verbinclude ColPivotingHouseholderQR_solve.out
*/
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
MatrixQType matrixQ(void) const;
/** \returns a reference to the matrix where the Householder QR decomposition is stored
*/
const MatrixType& matrixQR() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return m_qr;
}
ColPivotingHouseholderQR& compute(const MatrixType& matrix);
const IntRowVectorType& colsPermutation() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return m_cols_permutation;
}
/** \returns the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
* One way to work around that is to use logAbsDeterminant() instead.
*
* \sa logAbsDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar absDeterminant() const;
/** \returns the natural log of the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note This method is useful to work around the risk of overflow/underflow that's inherent
* to determinant computation.
*
* \sa absDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar logAbsDeterminant() const;
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
* \note This is computed at the time of the construction of the QR decomposition. This
* method does not perform any further computation.
*/
inline int rank() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return m_rank;
}
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline int dimensionOfKernel() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return m_qr.cols() - m_rank;
}
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
* linear map, i.e. has trivial kernel; false otherwise.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline bool isInjective() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return m_rank == m_qr.cols();
}
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
* linear map; false otherwise.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline bool isSurjective() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return m_rank == m_qr.rows();
}
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline bool isInvertible() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
return isInjective() && isSurjective();
}
/** Computes the inverse of the matrix of which *this is the QR decomposition.
*
* \param result a pointer to the matrix into which to store the inverse. Resized if needed.
*
* \note If this matrix is not invertible, *result is left with undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*
* \sa inverse()
*/
inline void computeInverse(MatrixType *result) const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the inverse of a non-square matrix!");
solve(MatrixType::Identity(m_qr.rows(), m_qr.cols()), result);
}
/** \returns the inverse of the matrix of which *this is the QR decomposition.
*
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*
* \sa computeInverse()
*/
inline MatrixType inverse() const
{
MatrixType result;
computeInverse(&result);
return result;
}
protected:
MatrixType m_qr;
HCoeffsType m_hCoeffs;
IntRowVectorType m_cols_permutation;
bool m_isInitialized;
RealScalar m_precision;
int m_rank;
int m_det_pq;
};
#ifndef EIGEN_HIDE_HEAVY_CODE
template<typename MatrixType>
typename MatrixType::RealScalar ColPivotingHouseholderQR<MatrixType>::absDeterminant() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return ei_abs(m_qr.diagonal().prod());
}
template<typename MatrixType>
typename MatrixType::RealScalar ColPivotingHouseholderQR<MatrixType>::logAbsDeterminant() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return m_qr.diagonal().cwise().abs().cwise().log().sum();
}
template<typename MatrixType>
ColPivotingHouseholderQR<MatrixType>& ColPivotingHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{
int rows = matrix.rows();
int cols = matrix.cols();
int size = std::min(rows,cols);
m_rank = size;
m_qr = matrix;
m_hCoeffs.resize(size);
RowVectorType temp(cols);
m_precision = epsilon<Scalar>() * size;
IntRowVectorType cols_transpositions(matrix.cols());
m_cols_permutation.resize(matrix.cols());
int number_of_transpositions = 0;
RealRowVectorType colSqNorms(cols);
for(int k = 0; k < cols; ++k)
colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm();
RealScalar biggestColSqNorm = colSqNorms.maxCoeff();
for (int k = 0; k < size; ++k)
{
int biggest_col_in_corner;
RealScalar biggestColSqNormInCorner = colSqNorms.end(cols-k).maxCoeff(&biggest_col_in_corner);
biggest_col_in_corner += k;
// if the corner is negligible, then we have less than full rank, and we can finish early
if(ei_isMuchSmallerThan(biggestColSqNormInCorner, biggestColSqNorm, m_precision))
{
m_rank = k;
for(int i = k; i < size; i++)
{
cols_transpositions.coeffRef(i) = i;
m_hCoeffs.coeffRef(i) = Scalar(0);
}
break;
}
cols_transpositions.coeffRef(k) = biggest_col_in_corner;
if(k != biggest_col_in_corner) {
m_qr.col(k).swap(m_qr.col(biggest_col_in_corner));
++number_of_transpositions;
}
RealScalar beta;
m_qr.col(k).end(rows-k).makeHouseholderInPlace(&m_hCoeffs.coeffRef(k), &beta);
m_qr.coeffRef(k,k) = beta;
m_qr.corner(BottomRight, rows-k, cols-k-1)
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), m_hCoeffs.coeffRef(k), &temp.coeffRef(k+1));
colSqNorms.end(cols-k-1) -= m_qr.row(k).end(cols-k-1).cwise().abs2();
}
for(int k = 0; k < matrix.cols(); ++k) m_cols_permutation.coeffRef(k) = k;
for(int k = 0; k < size; ++k)
std::swap(m_cols_permutation.coeffRef(k), m_cols_permutation.coeffRef(cols_transpositions.coeff(k)));
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
m_isInitialized = true;
return *this;
}
template<typename MatrixType>
template<typename OtherDerived, typename ResultType>
bool ColPivotingHouseholderQR<MatrixType>::solve(
const MatrixBase<OtherDerived>& b,
ResultType *result
) const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
result->resize(m_qr.cols(), b.cols());
if(m_rank==0)
{
if(b.squaredNorm() == RealScalar(0))
{
result->setZero();
return true;
}
else return false;
}
const int rows = m_qr.rows();
const int cols = b.cols();
ei_assert(b.rows() == rows);
typename OtherDerived::PlainMatrixType c(b);
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols);
for (int k = 0; k < m_rank; ++k)
{
int remainingSize = rows-k;
c.corner(BottomRight, remainingSize, cols)
.applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0));
}
if(!isSurjective())
{
// is c is in the image of R ?
RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff();
RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-m_rank, c.cols()).cwise().abs().maxCoeff();
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision*4))
return false;
}
m_qr.corner(TopLeft, m_rank, m_rank)
.template triangularView<UpperTriangular>()
.solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i);
for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero();
return true;
}
/** \returns the matrix Q */
template<typename MatrixType>
typename ColPivotingHouseholderQR<MatrixType>::MatrixQType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
{
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
// compute the product H'_0 H'_1 ... H'_n-1,
// where H_k is the k-th Householder transformation I - h_k v_k v_k'
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
int rows = m_qr.rows();
int cols = m_qr.cols();
int size = std::min(rows,cols);
MatrixQType res = MatrixQType::Identity(rows, rows);
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
for (int k = size-1; k >= 0; k--)
{
res.block(k, k, rows-k, rows-k)
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
}
return res;
}
#endif // EIGEN_HIDE_HEAVY_CODE
/** \return the column-pivoting Householder QR decomposition of \c *this.
*
* \sa class ColPivotingHouseholderQR
*/
template<typename Derived>
const ColPivotingHouseholderQR<typename MatrixBase<Derived>::PlainMatrixType>
MatrixBase<Derived>::colPivotingHouseholderQr() const
{
return ColPivotingHouseholderQR<PlainMatrixType>(eval());
}
#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H