mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 17:49:36 +08:00
124 lines
4.4 KiB
C++
124 lines
4.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/SVD>
|
|
#include <Eigen/LU>
|
|
|
|
template<typename MatrixType> void svd(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
SVD.h
|
|
*/
|
|
typename MatrixType::Index rows = m.rows();
|
|
typename MatrixType::Index cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
MatrixType a = MatrixType::Random(rows,cols);
|
|
Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> x(cols,1), x2(cols,1);
|
|
|
|
{
|
|
SVD<MatrixType> svd(a);
|
|
MatrixType sigma = MatrixType::Zero(rows,cols);
|
|
MatrixType matU = MatrixType::Zero(rows,rows);
|
|
MatrixType matV = MatrixType::Zero(cols,cols);
|
|
|
|
sigma.diagonal() = svd.singularValues();
|
|
matU = svd.matrixU();
|
|
VERIFY_IS_UNITARY(matU);
|
|
matV = svd.matrixV();
|
|
VERIFY_IS_UNITARY(matV);
|
|
VERIFY_IS_APPROX(a, matU * sigma * matV.transpose());
|
|
}
|
|
|
|
|
|
if (rows>=cols)
|
|
{
|
|
SVD<MatrixType> svd(a);
|
|
Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> b = Matrix<Scalar, MatrixType::ColsAtCompileTime, 1>::Random(rows,1);
|
|
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> x = svd.solve(b);
|
|
// evaluate normal equation which works also for least-squares solutions
|
|
VERIFY_IS_APPROX(a.adjoint()*a*x,a.adjoint()*b);
|
|
}
|
|
|
|
|
|
if(rows==cols)
|
|
{
|
|
SVD<MatrixType> svd(a);
|
|
MatrixType unitary, positive;
|
|
svd.computeUnitaryPositive(&unitary, &positive);
|
|
VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows()));
|
|
VERIFY_IS_APPROX(positive, positive.adjoint());
|
|
for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
|
|
VERIFY_IS_APPROX(unitary*positive, a);
|
|
|
|
svd.computePositiveUnitary(&positive, &unitary);
|
|
VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows()));
|
|
VERIFY_IS_APPROX(positive, positive.adjoint());
|
|
for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
|
|
VERIFY_IS_APPROX(positive*unitary, a);
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType> void svd_verify_assert()
|
|
{
|
|
MatrixType tmp;
|
|
|
|
SVD<MatrixType> svd;
|
|
VERIFY_RAISES_ASSERT(svd.solve(tmp))
|
|
VERIFY_RAISES_ASSERT(svd.matrixU())
|
|
VERIFY_RAISES_ASSERT(svd.singularValues())
|
|
VERIFY_RAISES_ASSERT(svd.matrixV())
|
|
VERIFY_RAISES_ASSERT(svd.computeUnitaryPositive(&tmp,&tmp))
|
|
VERIFY_RAISES_ASSERT(svd.computePositiveUnitary(&tmp,&tmp))
|
|
VERIFY_RAISES_ASSERT(svd.computeRotationScaling(&tmp,&tmp))
|
|
VERIFY_RAISES_ASSERT(svd.computeScalingRotation(&tmp,&tmp))
|
|
|
|
VERIFY_RAISES_ASSERT(SVD<MatrixXf>(10, 20))
|
|
}
|
|
|
|
void test_svd()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++)
|
|
{
|
|
CALL_SUBTEST_1( svd(Matrix3f()) );
|
|
CALL_SUBTEST_2( svd(Matrix4d()) );
|
|
|
|
int cols = ei_random<int>(2,50);
|
|
int rows = cols + ei_random<int>(0,50);
|
|
CALL_SUBTEST_3( svd(MatrixXf(rows,cols)) );
|
|
CALL_SUBTEST_4( svd(MatrixXd(rows,cols)) );
|
|
|
|
//complex are not implemented yet
|
|
//CALL_SUBTEST(svd(MatrixXcd(6,6)) );
|
|
//CALL_SUBTEST(svd(MatrixXcf(3,3)) );
|
|
}
|
|
|
|
CALL_SUBTEST_1( svd_verify_assert<Matrix3f>() );
|
|
CALL_SUBTEST_2( svd_verify_assert<Matrix4d>() );
|
|
CALL_SUBTEST_3( svd_verify_assert<MatrixXf>() );
|
|
CALL_SUBTEST_4( svd_verify_assert<MatrixXd>() );
|
|
}
|