mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-01 00:04:14 +08:00

* several fixes (transpose, matrix product, etc...) * Added a basic cholesky factorization * Added a low level hybrid dense/sparse vector class to help writing code involving intensive read/write in a fixed vector. It is currently used to implement the matrix product itself as well as in the Cholesky factorization.
255 lines
9.2 KiB
C++
255 lines
9.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_SPARSEPRODUCT_H
|
|
#define EIGEN_SPARSEPRODUCT_H
|
|
|
|
// sparse product return type specialization
|
|
template<typename Lhs, typename Rhs>
|
|
struct ProductReturnType<Lhs,Rhs,SparseProduct>
|
|
{
|
|
typedef typename ei_traits<Lhs>::Scalar Scalar;
|
|
enum {
|
|
LhsRowMajor = ei_traits<Lhs>::Flags & RowMajorBit,
|
|
RhsRowMajor = ei_traits<Rhs>::Flags & RowMajorBit,
|
|
TransposeRhs = (!LhsRowMajor) && RhsRowMajor,
|
|
TransposeLhs = LhsRowMajor && (!RhsRowMajor)
|
|
};
|
|
|
|
// FIXME if we transpose let's evaluate to a LinkedVectorMatrix since it is the
|
|
// type of the temporary to perform the transpose op
|
|
typedef typename ei_meta_if<TransposeLhs,
|
|
SparseMatrix<Scalar,0>,
|
|
const typename ei_nested<Lhs,Rhs::RowsAtCompileTime>::type>::ret LhsNested;
|
|
|
|
typedef typename ei_meta_if<TransposeRhs,
|
|
SparseMatrix<Scalar,0>,
|
|
const typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type>::ret RhsNested;
|
|
|
|
typedef Product<LhsNested,
|
|
RhsNested, SparseProduct> Type;
|
|
};
|
|
|
|
template<typename LhsNested, typename RhsNested>
|
|
struct ei_traits<Product<LhsNested, RhsNested, SparseProduct> >
|
|
{
|
|
// clean the nested types:
|
|
typedef typename ei_cleantype<LhsNested>::type _LhsNested;
|
|
typedef typename ei_cleantype<RhsNested>::type _RhsNested;
|
|
typedef typename _LhsNested::Scalar Scalar;
|
|
|
|
enum {
|
|
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
|
|
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
|
|
LhsFlags = _LhsNested::Flags,
|
|
RhsFlags = _RhsNested::Flags,
|
|
|
|
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
|
|
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
|
|
InnerSize = EIGEN_ENUM_MIN(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
|
|
|
|
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
|
|
|
|
LhsRowMajor = LhsFlags & RowMajorBit,
|
|
RhsRowMajor = RhsFlags & RowMajorBit,
|
|
|
|
EvalToRowMajor = (RhsFlags & LhsFlags & RowMajorBit),
|
|
|
|
RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
|
|
|
|
Flags = (int(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
|
|
| EvalBeforeAssigningBit
|
|
| EvalBeforeNestingBit,
|
|
|
|
CoeffReadCost = Dynamic
|
|
};
|
|
};
|
|
|
|
template<typename LhsNested, typename RhsNested> class Product<LhsNested,RhsNested,SparseProduct> : ei_no_assignment_operator,
|
|
public MatrixBase<Product<LhsNested, RhsNested, SparseProduct> >
|
|
{
|
|
public:
|
|
|
|
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
|
|
|
|
private:
|
|
|
|
typedef typename ei_traits<Product>::_LhsNested _LhsNested;
|
|
typedef typename ei_traits<Product>::_RhsNested _RhsNested;
|
|
|
|
public:
|
|
|
|
template<typename Lhs, typename Rhs>
|
|
inline Product(const Lhs& lhs, const Rhs& rhs)
|
|
: m_lhs(lhs), m_rhs(rhs)
|
|
{
|
|
ei_assert(lhs.cols() == rhs.rows());
|
|
}
|
|
|
|
Scalar coeff(int, int) const { ei_assert(false && "eigen internal error"); }
|
|
Scalar& coeffRef(int, int) { ei_assert(false && "eigen internal error"); }
|
|
|
|
inline int rows() const { return m_lhs.rows(); }
|
|
inline int cols() const { return m_rhs.cols(); }
|
|
|
|
const _LhsNested& lhs() const { return m_lhs; }
|
|
const _LhsNested& rhs() const { return m_rhs; }
|
|
|
|
protected:
|
|
LhsNested m_lhs;
|
|
RhsNested m_rhs;
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType,
|
|
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
|
|
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
|
|
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
|
|
struct ei_sparse_product_selector;
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
|
{
|
|
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
|
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// make sure to call innerSize/outerSize since we fake the storage order.
|
|
int rows = lhs.innerSize();
|
|
int cols = rhs.outerSize();
|
|
int size = lhs.outerSize();
|
|
ei_assert(size == rhs.innerSize());
|
|
|
|
// allocate a temporary buffer
|
|
AmbiVector<Scalar> tempVector(rows);
|
|
|
|
// estimate the number of non zero entries
|
|
float ratioLhs = float(lhs.nonZeros())/float(lhs.rows()*lhs.cols());
|
|
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
|
|
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
|
|
|
|
res.resize(rows, cols);
|
|
res.startFill(ratioRes*rows*cols);
|
|
for (int j=0; j<cols; ++j)
|
|
{
|
|
// let's do a more accurate determination of the nnz ratio for the current column j of res
|
|
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
|
|
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
|
|
float ratioColRes = ratioRes;
|
|
tempVector.init(ratioColRes);
|
|
tempVector.setZero();
|
|
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
|
{
|
|
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
|
|
Scalar x = rhsIt.value();
|
|
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
|
|
{
|
|
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
|
|
}
|
|
}
|
|
for (typename AmbiVector<Scalar>::Iterator it(tempVector); it; ++it)
|
|
res.fill(it.index(), j) = it.value();
|
|
}
|
|
res.endFill();
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
SparseTemporaryType _res(res.rows(), res.cols());
|
|
ei_sparse_product_selector<Lhs,Rhs,SparseTemporaryType,ColMajor,ColMajor,ColMajor>::run(lhs, rhs, _res);
|
|
res = _res;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// let's transpose the product to get a column x column product
|
|
ei_sparse_product_selector<Rhs,Lhs,ResultType,ColMajor,ColMajor,ColMajor>::run(rhs, lhs, res);
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// let's transpose the product to get a column x column product
|
|
SparseTemporaryType _res(res.cols(), res.rows());
|
|
ei_sparse_product_selector<Rhs,Lhs,ResultType,ColMajor,ColMajor,ColMajor>
|
|
::run(rhs, lhs, _res);
|
|
res = _res.transpose();
|
|
}
|
|
};
|
|
|
|
// NOTE eventually let's transpose one argument even in this case since it might be expensive if
|
|
// the result is not dense.
|
|
// template<typename Lhs, typename Rhs, typename ResultType, int ResStorageOrder>
|
|
// struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ResStorageOrder>
|
|
// {
|
|
// static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
// {
|
|
// // trivial product as lhs.row/rhs.col dot products
|
|
// // loop over the preferred order of the result
|
|
// }
|
|
// };
|
|
|
|
// NOTE the 2 others cases (col row *) must never occurs since they are caught
|
|
// by ProductReturnType which transform it to (col col *) by evaluating rhs.
|
|
|
|
|
|
template<typename Derived>
|
|
template<typename Lhs, typename Rhs>
|
|
inline Derived& MatrixBase<Derived>::lazyAssign(const Product<Lhs,Rhs,SparseProduct>& product)
|
|
{
|
|
// std::cout << "sparse product to dense\n";
|
|
ei_sparse_product_selector<
|
|
typename ei_cleantype<Lhs>::type,
|
|
typename ei_cleantype<Rhs>::type,
|
|
typename ei_cleantype<Derived>::type>::run(product.lhs(),product.rhs(),derived());
|
|
return derived();
|
|
}
|
|
|
|
template<typename Derived>
|
|
template<typename Lhs, typename Rhs>
|
|
inline Derived& SparseMatrixBase<Derived>::operator=(const Product<Lhs,Rhs,SparseProduct>& product)
|
|
{
|
|
// std::cout << "sparse product to sparse\n";
|
|
ei_sparse_product_selector<
|
|
typename ei_cleantype<Lhs>::type,
|
|
typename ei_cleantype<Rhs>::type,
|
|
Derived>::run(product.lhs(),product.rhs(),derived());
|
|
return derived();
|
|
}
|
|
|
|
#endif // EIGEN_SPARSEPRODUCT_H
|