mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-24 22:04:28 +08:00
1086 lines
46 KiB
C++
1086 lines
46 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
||
// for linear algebra.
|
||
//
|
||
// This Source Code Form is subject to the terms of the Mozilla
|
||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
//
|
||
// The conversion routines are Copyright (c) Fabian Giesen, 2016.
|
||
// The original license follows:
|
||
//
|
||
// Copyright (c) Fabian Giesen, 2016
|
||
// All rights reserved.
|
||
// Redistribution and use in source and binary forms, with or without
|
||
// modification, are permitted.
|
||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
||
// Standard 16-bit float type, mostly useful for GPUs. Defines a new
|
||
// type Eigen::half (inheriting either from CUDA's or HIP's __half struct) with
|
||
// operator overloads such that it behaves basically as an arithmetic
|
||
// type. It will be quite slow on CPUs (so it is recommended to stay
|
||
// in fp32 for CPUs, except for simple parameter conversions, I/O
|
||
// to disk and the likes), but fast on GPUs.
|
||
|
||
#ifndef EIGEN_HALF_H
|
||
#define EIGEN_HALF_H
|
||
|
||
// IWYU pragma: private
|
||
#include "../../InternalHeaderCheck.h"
|
||
|
||
// When compiling with GPU support, the "__half_raw" base class as well as
|
||
// some other routines are defined in the GPU compiler header files
|
||
// (cuda_fp16.h, hip_fp16.h), and they are not tagged constexpr
|
||
// As a consequence, we get compile failures when compiling Eigen with
|
||
// GPU support. Hence the need to disable EIGEN_CONSTEXPR when building
|
||
// Eigen with GPU support.
|
||
// Any functions that require `numext::bit_cast` may also not be constexpr,
|
||
// including any native types when setting via raw bit values.
|
||
#if defined(EIGEN_HAS_GPU_FP16) || defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16)
|
||
#define _EIGEN_MAYBE_CONSTEXPR
|
||
#else
|
||
#define _EIGEN_MAYBE_CONSTEXPR constexpr
|
||
#endif
|
||
|
||
#define F16_PACKET_FUNCTION(PACKET_F, PACKET_F16, METHOD) \
|
||
template <> \
|
||
EIGEN_UNUSED EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC PACKET_F16 METHOD<PACKET_F16>(const PACKET_F16& _x) { \
|
||
return float2half(METHOD<PACKET_F>(half2float(_x))); \
|
||
}
|
||
|
||
namespace Eigen {
|
||
|
||
struct half;
|
||
|
||
namespace half_impl {
|
||
|
||
// We want to use the __half_raw struct from the HIP header file only during the device compile phase.
|
||
// This is required because of a quirk in the way TensorFlow GPU builds are done.
|
||
// When compiling TensorFlow source code with GPU support, files that
|
||
// * contain GPU kernels (i.e. *.cu.cc files) are compiled via hipcc
|
||
// * do not contain GPU kernels ( i.e. *.cc files) are compiled via gcc (typically)
|
||
//
|
||
// Tensorflow uses the Eigen::half type as its FP16 type, and there are functions that
|
||
// * are defined in a file that gets compiled via hipcc AND
|
||
// * have Eigen::half as a pass-by-value argument AND
|
||
// * are called in a file that gets compiled via gcc
|
||
//
|
||
// In the scenario described above the caller and callee will see different versions
|
||
// of the Eigen::half base class __half_raw, and they will be compiled by different compilers
|
||
//
|
||
// There appears to be an ABI mismatch between gcc and clang (which is called by hipcc) that results in
|
||
// the callee getting corrupted values for the Eigen::half argument.
|
||
//
|
||
// Making the host side compile phase of hipcc use the same Eigen::half impl, as the gcc compile, resolves
|
||
// this error, and hence the following convoluted #if condition
|
||
#if !defined(EIGEN_HAS_GPU_FP16) || !defined(EIGEN_GPU_COMPILE_PHASE)
|
||
|
||
// Make our own __half_raw definition that is similar to CUDA's.
|
||
struct __half_raw {
|
||
struct construct_from_rep_tag {};
|
||
#if (defined(EIGEN_HAS_GPU_FP16) && !defined(EIGEN_GPU_COMPILE_PHASE))
|
||
// Eigen::half can be used as the datatype for shared memory declarations (in Eigen and TF)
|
||
// The element type for shared memory cannot have non-trivial constructors
|
||
// and hence the following special casing (which skips the zero-initilization).
|
||
// Note that this check gets done even in the host compilation phase, and
|
||
// hence the need for this
|
||
EIGEN_DEVICE_FUNC __half_raw() {}
|
||
#else
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR __half_raw() : x(0) {}
|
||
#endif
|
||
|
||
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
|
||
explicit EIGEN_DEVICE_FUNC __half_raw(numext::uint16_t raw) : x(numext::bit_cast<__fp16>(raw)) {}
|
||
EIGEN_DEVICE_FUNC constexpr __half_raw(construct_from_rep_tag, __fp16 rep) : x{rep} {}
|
||
__fp16 x;
|
||
#elif defined(EIGEN_HAS_BUILTIN_FLOAT16)
|
||
explicit EIGEN_DEVICE_FUNC __half_raw(numext::uint16_t raw) : x(numext::bit_cast<_Float16>(raw)) {}
|
||
EIGEN_DEVICE_FUNC constexpr __half_raw(construct_from_rep_tag, _Float16 rep) : x{rep} {}
|
||
_Float16 x;
|
||
#else
|
||
explicit EIGEN_DEVICE_FUNC constexpr __half_raw(numext::uint16_t raw) : x(raw) {}
|
||
EIGEN_DEVICE_FUNC constexpr __half_raw(construct_from_rep_tag, numext::uint16_t rep) : x{rep} {}
|
||
numext::uint16_t x;
|
||
#endif
|
||
};
|
||
|
||
#elif defined(EIGEN_HAS_HIP_FP16)
|
||
// HIP GPU compile phase: nothing to do here.
|
||
// HIP fp16 header file has a definition for __half_raw
|
||
#elif defined(EIGEN_HAS_CUDA_FP16)
|
||
|
||
// CUDA GPU compile phase.
|
||
#if EIGEN_CUDA_SDK_VER < 90000
|
||
// In CUDA < 9.0, __half is the equivalent of CUDA 9's __half_raw
|
||
typedef __half __half_raw;
|
||
#endif // defined(EIGEN_HAS_CUDA_FP16)
|
||
|
||
#elif defined(SYCL_DEVICE_ONLY)
|
||
typedef cl::sycl::half __half_raw;
|
||
#endif
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x);
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff);
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h);
|
||
|
||
struct half_base : public __half_raw {
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half_base() {}
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half_base(const __half_raw& h) : __half_raw(h) {}
|
||
|
||
#if defined(EIGEN_HAS_GPU_FP16)
|
||
#if defined(EIGEN_HAS_HIP_FP16)
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half_base(const __half& h) { x = __half_as_ushort(h); }
|
||
#elif defined(EIGEN_HAS_CUDA_FP16)
|
||
#if EIGEN_CUDA_SDK_VER >= 90000
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half_base(const __half& h) : __half_raw(*(__half_raw*)&h) {}
|
||
#endif
|
||
#endif
|
||
#endif
|
||
};
|
||
|
||
} // namespace half_impl
|
||
|
||
// Class definition.
|
||
struct half : public half_impl::half_base {
|
||
// Writing this out as separate #if-else blocks to make the code easier to follow
|
||
// The same applies to most #if-else blocks in this file
|
||
#if !defined(EIGEN_HAS_GPU_FP16) || !defined(EIGEN_GPU_COMPILE_PHASE)
|
||
// Use the same base class for the following two scenarios
|
||
// * when compiling without GPU support enabled
|
||
// * during host compile phase when compiling with GPU support enabled
|
||
typedef half_impl::__half_raw __half_raw;
|
||
#elif defined(EIGEN_HAS_HIP_FP16)
|
||
// Nothing to do here
|
||
// HIP fp16 header file has a definition for __half_raw
|
||
#elif defined(EIGEN_HAS_CUDA_FP16)
|
||
// Note that EIGEN_CUDA_SDK_VER is set to 0 even when compiling with HIP, so
|
||
// (EIGEN_CUDA_SDK_VER < 90000) is true even for HIP! So keeping this within
|
||
// #if defined(EIGEN_HAS_CUDA_FP16) is needed
|
||
#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000
|
||
typedef half_impl::__half_raw __half_raw;
|
||
#endif
|
||
#endif
|
||
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half() {}
|
||
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(const __half_raw& h) : half_impl::half_base(h) {}
|
||
|
||
#if defined(EIGEN_HAS_GPU_FP16)
|
||
#if defined(EIGEN_HAS_HIP_FP16)
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {}
|
||
#elif defined(EIGEN_HAS_CUDA_FP16)
|
||
#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {}
|
||
#endif
|
||
#endif
|
||
#endif
|
||
|
||
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
|
||
explicit EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(__fp16 b)
|
||
: half(__half_raw(__half_raw::construct_from_rep_tag(), b)) {}
|
||
#elif defined(EIGEN_HAS_BUILTIN_FLOAT16)
|
||
explicit EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(_Float16 b)
|
||
: half(__half_raw(__half_raw::construct_from_rep_tag(), b)) {}
|
||
#endif
|
||
|
||
explicit EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(bool b)
|
||
: half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {}
|
||
template <class T>
|
||
explicit EIGEN_DEVICE_FUNC half(T val)
|
||
: half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(val))) {}
|
||
explicit EIGEN_DEVICE_FUNC half(float f) : half_impl::half_base(half_impl::float_to_half_rtne(f)) {}
|
||
|
||
// Following the convention of numpy, converting between complex and
|
||
// float will lead to loss of imag value.
|
||
template <typename RealScalar>
|
||
explicit EIGEN_DEVICE_FUNC half(std::complex<RealScalar> c)
|
||
: half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(c.real()))) {}
|
||
|
||
EIGEN_DEVICE_FUNC operator float() const { // NOLINT: Allow implicit conversion to float, because it is lossless.
|
||
return half_impl::half_to_float(*this);
|
||
}
|
||
|
||
#if defined(EIGEN_HAS_GPU_FP16) && !defined(EIGEN_GPU_COMPILE_PHASE)
|
||
EIGEN_DEVICE_FUNC operator __half() const {
|
||
::__half_raw hr;
|
||
hr.x = x;
|
||
return __half(hr);
|
||
}
|
||
#endif
|
||
};
|
||
|
||
// TODO(majnemer): Get rid of this once we can rely on C++17 inline variables do
|
||
// solve the ODR issue.
|
||
namespace half_impl {
|
||
template <typename = void>
|
||
struct numeric_limits_half_impl {
|
||
static constexpr const bool is_specialized = true;
|
||
static constexpr const bool is_signed = true;
|
||
static constexpr const bool is_integer = false;
|
||
static constexpr const bool is_exact = false;
|
||
static constexpr const bool has_infinity = true;
|
||
static constexpr const bool has_quiet_NaN = true;
|
||
static constexpr const bool has_signaling_NaN = true;
|
||
EIGEN_DIAGNOSTICS(push)
|
||
EIGEN_DISABLE_DEPRECATED_WARNING
|
||
static constexpr const std::float_denorm_style has_denorm = std::denorm_present;
|
||
static constexpr const bool has_denorm_loss = false;
|
||
EIGEN_DIAGNOSTICS(pop)
|
||
static constexpr const std::float_round_style round_style = std::round_to_nearest;
|
||
static constexpr const bool is_iec559 = true;
|
||
// The C++ standard defines this as "true if the set of values representable
|
||
// by the type is finite." Half has finite precision.
|
||
static constexpr const bool is_bounded = true;
|
||
static constexpr const bool is_modulo = false;
|
||
static constexpr const int digits = 11;
|
||
static constexpr const int digits10 =
|
||
3; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
|
||
static constexpr const int max_digits10 =
|
||
5; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
|
||
static constexpr const int radix = std::numeric_limits<float>::radix;
|
||
static constexpr const int min_exponent = -13;
|
||
static constexpr const int min_exponent10 = -4;
|
||
static constexpr const int max_exponent = 16;
|
||
static constexpr const int max_exponent10 = 4;
|
||
static constexpr const bool traps = std::numeric_limits<float>::traps;
|
||
// IEEE754: "The implementer shall choose how tininess is detected, but shall
|
||
// detect tininess in the same way for all operations in radix two"
|
||
static constexpr const bool tinyness_before = std::numeric_limits<float>::tinyness_before;
|
||
|
||
static _EIGEN_MAYBE_CONSTEXPR Eigen::half(min)() { return Eigen::half_impl::raw_uint16_to_half(0x0400); }
|
||
static _EIGEN_MAYBE_CONSTEXPR Eigen::half lowest() { return Eigen::half_impl::raw_uint16_to_half(0xfbff); }
|
||
static _EIGEN_MAYBE_CONSTEXPR Eigen::half(max)() { return Eigen::half_impl::raw_uint16_to_half(0x7bff); }
|
||
static _EIGEN_MAYBE_CONSTEXPR Eigen::half epsilon() { return Eigen::half_impl::raw_uint16_to_half(0x1400); }
|
||
static _EIGEN_MAYBE_CONSTEXPR Eigen::half round_error() { return Eigen::half_impl::raw_uint16_to_half(0x3800); }
|
||
static _EIGEN_MAYBE_CONSTEXPR Eigen::half infinity() { return Eigen::half_impl::raw_uint16_to_half(0x7c00); }
|
||
static _EIGEN_MAYBE_CONSTEXPR Eigen::half quiet_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); }
|
||
static _EIGEN_MAYBE_CONSTEXPR Eigen::half signaling_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7d00); }
|
||
static _EIGEN_MAYBE_CONSTEXPR Eigen::half denorm_min() { return Eigen::half_impl::raw_uint16_to_half(0x0001); }
|
||
};
|
||
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::is_specialized;
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::is_signed;
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::is_integer;
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::is_exact;
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::has_infinity;
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::has_quiet_NaN;
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::has_signaling_NaN;
|
||
EIGEN_DIAGNOSTICS(push)
|
||
EIGEN_DISABLE_DEPRECATED_WARNING
|
||
template <typename T>
|
||
constexpr const std::float_denorm_style numeric_limits_half_impl<T>::has_denorm;
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::has_denorm_loss;
|
||
EIGEN_DIAGNOSTICS(pop)
|
||
template <typename T>
|
||
constexpr const std::float_round_style numeric_limits_half_impl<T>::round_style;
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::is_iec559;
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::is_bounded;
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::is_modulo;
|
||
template <typename T>
|
||
constexpr const int numeric_limits_half_impl<T>::digits;
|
||
template <typename T>
|
||
constexpr const int numeric_limits_half_impl<T>::digits10;
|
||
template <typename T>
|
||
constexpr const int numeric_limits_half_impl<T>::max_digits10;
|
||
template <typename T>
|
||
constexpr const int numeric_limits_half_impl<T>::radix;
|
||
template <typename T>
|
||
constexpr const int numeric_limits_half_impl<T>::min_exponent;
|
||
template <typename T>
|
||
constexpr const int numeric_limits_half_impl<T>::min_exponent10;
|
||
template <typename T>
|
||
constexpr const int numeric_limits_half_impl<T>::max_exponent;
|
||
template <typename T>
|
||
constexpr const int numeric_limits_half_impl<T>::max_exponent10;
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::traps;
|
||
template <typename T>
|
||
constexpr const bool numeric_limits_half_impl<T>::tinyness_before;
|
||
} // end namespace half_impl
|
||
} // end namespace Eigen
|
||
|
||
namespace std {
|
||
// If std::numeric_limits<T> is specialized, should also specialize
|
||
// std::numeric_limits<const T>, std::numeric_limits<volatile T>, and
|
||
// std::numeric_limits<const volatile T>
|
||
// https://stackoverflow.com/a/16519653/
|
||
template <>
|
||
class numeric_limits<Eigen::half> : public Eigen::half_impl::numeric_limits_half_impl<> {};
|
||
template <>
|
||
class numeric_limits<const Eigen::half> : public numeric_limits<Eigen::half> {};
|
||
template <>
|
||
class numeric_limits<volatile Eigen::half> : public numeric_limits<Eigen::half> {};
|
||
template <>
|
||
class numeric_limits<const volatile Eigen::half> : public numeric_limits<Eigen::half> {};
|
||
} // end namespace std
|
||
|
||
namespace Eigen {
|
||
|
||
namespace half_impl {
|
||
|
||
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \
|
||
(defined(EIGEN_HAS_HIP_FP16) && defined(HIP_DEVICE_COMPILE))
|
||
// Note: We deliberately do *not* define this to 1 even if we have Arm's native
|
||
// fp16 type since GPU half types are rather different from native CPU half types.
|
||
#define EIGEN_HAS_NATIVE_GPU_FP16
|
||
#endif
|
||
|
||
// Intrinsics for native fp16 support. Note that on current hardware,
|
||
// these are no faster than fp32 arithmetic (you need to use the half2
|
||
// versions to get the ALU speed increased), but you do save the
|
||
// conversion steps back and forth.
|
||
|
||
#if defined(EIGEN_HAS_NATIVE_GPU_FP16)
|
||
EIGEN_STRONG_INLINE __device__ half operator+(const half& a, const half& b) {
|
||
#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000
|
||
return __hadd(::__half(a), ::__half(b));
|
||
#else
|
||
return __hadd(a, b);
|
||
#endif
|
||
}
|
||
EIGEN_STRONG_INLINE __device__ half operator*(const half& a, const half& b) { return __hmul(a, b); }
|
||
EIGEN_STRONG_INLINE __device__ half operator-(const half& a, const half& b) { return __hsub(a, b); }
|
||
EIGEN_STRONG_INLINE __device__ half operator/(const half& a, const half& b) {
|
||
#if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000
|
||
return __hdiv(a, b);
|
||
#else
|
||
float num = __half2float(a);
|
||
float denom = __half2float(b);
|
||
return __float2half(num / denom);
|
||
#endif
|
||
}
|
||
EIGEN_STRONG_INLINE __device__ half operator-(const half& a) { return __hneg(a); }
|
||
EIGEN_STRONG_INLINE __device__ half& operator+=(half& a, const half& b) {
|
||
a = a + b;
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE __device__ half& operator*=(half& a, const half& b) {
|
||
a = a * b;
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE __device__ half& operator-=(half& a, const half& b) {
|
||
a = a - b;
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE __device__ half& operator/=(half& a, const half& b) {
|
||
a = a / b;
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE __device__ bool operator==(const half& a, const half& b) { return __heq(a, b); }
|
||
EIGEN_STRONG_INLINE __device__ bool operator!=(const half& a, const half& b) { return __hne(a, b); }
|
||
EIGEN_STRONG_INLINE __device__ bool operator<(const half& a, const half& b) { return __hlt(a, b); }
|
||
EIGEN_STRONG_INLINE __device__ bool operator<=(const half& a, const half& b) { return __hle(a, b); }
|
||
EIGEN_STRONG_INLINE __device__ bool operator>(const half& a, const half& b) { return __hgt(a, b); }
|
||
EIGEN_STRONG_INLINE __device__ bool operator>=(const half& a, const half& b) { return __hge(a, b); }
|
||
|
||
#endif // EIGEN_HAS_NATIVE_GPU_FP16
|
||
|
||
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) && !defined(EIGEN_GPU_COMPILE_PHASE)
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator+(const half& a, const half& b) { return half(vaddh_f16(a.x, b.x)); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator*(const half& a, const half& b) { return half(vmulh_f16(a.x, b.x)); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a, const half& b) { return half(vsubh_f16(a.x, b.x)); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, const half& b) { return half(vdivh_f16(a.x, b.x)); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a) { return half(vnegh_f16(a.x)); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator+=(half& a, const half& b) {
|
||
a = half(vaddh_f16(a.x, b.x));
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator*=(half& a, const half& b) {
|
||
a = half(vmulh_f16(a.x, b.x));
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator-=(half& a, const half& b) {
|
||
a = half(vsubh_f16(a.x, b.x));
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator/=(half& a, const half& b) {
|
||
a = half(vdivh_f16(a.x, b.x));
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator==(const half& a, const half& b) { return vceqh_f16(a.x, b.x); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator!=(const half& a, const half& b) { return !vceqh_f16(a.x, b.x); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(const half& a, const half& b) { return vclth_f16(a.x, b.x); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(const half& a, const half& b) { return vcleh_f16(a.x, b.x); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(const half& a, const half& b) { return vcgth_f16(a.x, b.x); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(const half& a, const half& b) { return vcgeh_f16(a.x, b.x); }
|
||
|
||
#elif defined(EIGEN_HAS_BUILTIN_FLOAT16) && !defined(EIGEN_GPU_COMPILE_PHASE)
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator+(const half& a, const half& b) { return half(a.x + b.x); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator*(const half& a, const half& b) { return half(a.x * b.x); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a, const half& b) { return half(a.x - b.x); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, const half& b) { return half(a.x / b.x); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a) { return half(-a.x); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator+=(half& a, const half& b) {
|
||
a = a + b;
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator*=(half& a, const half& b) {
|
||
a = a * b;
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator-=(half& a, const half& b) {
|
||
a = a - b;
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator/=(half& a, const half& b) {
|
||
a = a / b;
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator==(const half& a, const half& b) { return a.x == b.x; }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator!=(const half& a, const half& b) { return a.x != b.x; }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(const half& a, const half& b) { return a.x < b.x; }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(const half& a, const half& b) { return a.x <= b.x; }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(const half& a, const half& b) { return a.x > b.x; }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(const half& a, const half& b) { return a.x >= b.x; }
|
||
|
||
// We need to distinguish ‘clang as the CUDA compiler’ from ‘clang as the host compiler,
|
||
// invoked by NVCC’ (e.g. on MacOS). The former needs to see both host and device implementation
|
||
// of the functions, while the latter can only deal with one of them.
|
||
#elif !defined(EIGEN_HAS_NATIVE_GPU_FP16) || (EIGEN_COMP_CLANG && !EIGEN_COMP_NVCC) // Emulate support for half floats
|
||
|
||
#if EIGEN_COMP_CLANG && defined(EIGEN_GPUCC)
|
||
// We need to provide emulated *host-side* FP16 operators for clang.
|
||
#pragma push_macro("EIGEN_DEVICE_FUNC")
|
||
#undef EIGEN_DEVICE_FUNC
|
||
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_HAS_NATIVE_GPU_FP16)
|
||
#define EIGEN_DEVICE_FUNC __host__
|
||
#else // both host and device need emulated ops.
|
||
#define EIGEN_DEVICE_FUNC __host__ __device__
|
||
#endif
|
||
#endif
|
||
|
||
// Definitions for CPUs and older HIP+CUDA, mostly working through conversion
|
||
// to/from fp32.
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator+(const half& a, const half& b) { return half(float(a) + float(b)); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator*(const half& a, const half& b) { return half(float(a) * float(b)); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a, const half& b) { return half(float(a) - float(b)); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, const half& b) { return half(float(a) / float(b)); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a) {
|
||
half result;
|
||
result.x = a.x ^ 0x8000;
|
||
return result;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator+=(half& a, const half& b) {
|
||
a = half(float(a) + float(b));
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator*=(half& a, const half& b) {
|
||
a = half(float(a) * float(b));
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator-=(half& a, const half& b) {
|
||
a = half(float(a) - float(b));
|
||
return a;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator/=(half& a, const half& b) {
|
||
a = half(float(a) / float(b));
|
||
return a;
|
||
}
|
||
|
||
// Non-negative floating point numbers have a monotonic mapping to non-negative integers.
|
||
// This property allows floating point numbers to be reinterpreted as integers for comparisons, which is useful if there
|
||
// is no native floating point comparison operator. Floating point signedness is handled by the sign-magnitude
|
||
// representation, whereas integers typically use two's complement. Converting the bit pattern from sign-magnitude to
|
||
// two's complement allows the transformed bit patterns be compared as signed integers. All edge cases (+/-0 and +/-
|
||
// infinity) are handled automatically, except NaN.
|
||
//
|
||
// fp16 uses 1 sign bit, 5 exponent bits, and 10 mantissa bits. The bit pattern conveys NaN when all the exponent
|
||
// bits (5) are set, and at least one mantissa bit is set. The sign bit is irrelevant for determining NaN. To check for
|
||
// NaN, clear the sign bit and check if the integral representation is greater than 01111100000000. To test
|
||
// for non-NaN, clear the sign bit and check if the integeral representation is less than or equal to 01111100000000.
|
||
|
||
// convert sign-magnitude representation to two's complement
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int16_t mapToSigned(uint16_t a) {
|
||
constexpr uint16_t kAbsMask = (1 << 15) - 1;
|
||
// If the sign bit is set, clear the sign bit and return the (integer) negation. Otherwise, return the input.
|
||
return (a >> 15) ? -(a & kAbsMask) : a;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool isOrdered(const half& a, const half& b) {
|
||
constexpr uint16_t kInf = ((1 << 5) - 1) << 10;
|
||
constexpr uint16_t kAbsMask = (1 << 15) - 1;
|
||
return numext::maxi(a.x & kAbsMask, b.x & kAbsMask) <= kInf;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator==(const half& a, const half& b) {
|
||
bool result = mapToSigned(a.x) == mapToSigned(b.x);
|
||
result &= isOrdered(a, b);
|
||
return result;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator!=(const half& a, const half& b) { return !(a == b); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(const half& a, const half& b) {
|
||
bool result = mapToSigned(a.x) < mapToSigned(b.x);
|
||
result &= isOrdered(a, b);
|
||
return result;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(const half& a, const half& b) {
|
||
bool result = mapToSigned(a.x) <= mapToSigned(b.x);
|
||
result &= isOrdered(a, b);
|
||
return result;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(const half& a, const half& b) {
|
||
bool result = mapToSigned(a.x) > mapToSigned(b.x);
|
||
result &= isOrdered(a, b);
|
||
return result;
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(const half& a, const half& b) {
|
||
bool result = mapToSigned(a.x) >= mapToSigned(b.x);
|
||
result &= isOrdered(a, b);
|
||
return result;
|
||
}
|
||
|
||
#if EIGEN_COMP_CLANG && defined(EIGEN_GPUCC)
|
||
#pragma pop_macro("EIGEN_DEVICE_FUNC")
|
||
#endif
|
||
|
||
#endif // Emulate support for half floats
|
||
|
||
// Division by an index. Do it in full float precision to avoid accuracy
|
||
// issues in converting the denominator to half.
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, Index b) {
|
||
return half(static_cast<float>(a) / static_cast<float>(b));
|
||
}
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator++(half& a) {
|
||
a += half(1);
|
||
return a;
|
||
}
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator--(half& a) {
|
||
a -= half(1);
|
||
return a;
|
||
}
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator++(half& a, int) {
|
||
half original_value = a;
|
||
++a;
|
||
return original_value;
|
||
}
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator--(half& a, int) {
|
||
half original_value = a;
|
||
--a;
|
||
return original_value;
|
||
}
|
||
|
||
// Conversion routines, including fallbacks for the host or older CUDA.
|
||
// Note that newer Intel CPUs (Haswell or newer) have vectorized versions of
|
||
// these in hardware. If we need more performance on older/other CPUs, they are
|
||
// also possible to vectorize directly.
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x) {
|
||
// We cannot simply do a "return __half_raw(x)" here, because __half_raw is union type
|
||
// in the hip_fp16 header file, and that will trigger a compile error
|
||
// On the other hand, having anything but a return statement also triggers a compile error
|
||
// because this is constexpr function.
|
||
// Fortunately, since we need to disable EIGEN_CONSTEXPR for GPU anyway, we can get out
|
||
// of this catch22 by having separate bodies for GPU / non GPU
|
||
#if defined(EIGEN_HAS_GPU_FP16)
|
||
__half_raw h;
|
||
h.x = x;
|
||
return h;
|
||
#else
|
||
return __half_raw(x);
|
||
#endif
|
||
}
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC numext::uint16_t raw_half_as_uint16(const __half_raw& h) {
|
||
// HIP/CUDA/Default have a member 'x' of type uint16_t.
|
||
// For ARM64 native half, the member 'x' is of type __fp16, so we need to bit-cast.
|
||
// For SYCL, cl::sycl::half is _Float16, so cast directly.
|
||
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
|
||
return numext::bit_cast<numext::uint16_t>(h.x);
|
||
#elif defined(EIGEN_HAS_BUILTIN_FLOAT16)
|
||
return numext::bit_cast<numext::uint16_t>(h.x);
|
||
#elif defined(SYCL_DEVICE_ONLY)
|
||
return numext::bit_cast<numext::uint16_t>(h);
|
||
#else
|
||
return h.x;
|
||
#endif
|
||
}
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff) {
|
||
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
|
||
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
|
||
__half tmp_ff = __float2half(ff);
|
||
return *(__half_raw*)&tmp_ff;
|
||
|
||
#elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
|
||
__half_raw h;
|
||
h.x = static_cast<__fp16>(ff);
|
||
return h;
|
||
|
||
#elif defined(EIGEN_HAS_BUILTIN_FLOAT16)
|
||
__half_raw h;
|
||
h.x = static_cast<_Float16>(ff);
|
||
return h;
|
||
|
||
#elif defined(EIGEN_HAS_FP16_C)
|
||
__half_raw h;
|
||
#if EIGEN_COMP_MSVC
|
||
// MSVC does not have scalar instructions.
|
||
h.x = _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(ff), 0), 0);
|
||
#else
|
||
h.x = _cvtss_sh(ff, 0);
|
||
#endif
|
||
return h;
|
||
|
||
#else
|
||
uint32_t f_bits = Eigen::numext::bit_cast<uint32_t>(ff);
|
||
const uint32_t f32infty_bits = {255 << 23};
|
||
const uint32_t f16max_bits = {(127 + 16) << 23};
|
||
const uint32_t denorm_magic_bits = {((127 - 15) + (23 - 10) + 1) << 23};
|
||
const uint32_t sign_mask = 0x80000000u;
|
||
__half_raw o;
|
||
o.x = static_cast<uint16_t>(0x0u);
|
||
|
||
const uint32_t sign = f_bits & sign_mask;
|
||
f_bits ^= sign;
|
||
|
||
// NOTE all the integer compares in this function can be safely
|
||
// compiled into signed compares since all operands are below
|
||
// 0x80000000. Important if you want fast straight SSE2 code
|
||
// (since there's no unsigned PCMPGTD).
|
||
|
||
if (f_bits >= f16max_bits) { // result is Inf or NaN (all exponent bits set)
|
||
o.x = (f_bits > f32infty_bits) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
|
||
} else { // (De)normalized number or zero
|
||
if (f_bits < (113 << 23)) { // resulting FP16 is subnormal or zero
|
||
// use a magic value to align our 10 mantissa bits at the bottom of
|
||
// the float. as long as FP addition is round-to-nearest-even this
|
||
// just works.
|
||
f_bits = Eigen::numext::bit_cast<uint32_t>(Eigen::numext::bit_cast<float>(f_bits) +
|
||
Eigen::numext::bit_cast<float>(denorm_magic_bits));
|
||
|
||
// and one integer subtract of the bias later, we have our final float!
|
||
o.x = static_cast<numext::uint16_t>(f_bits - denorm_magic_bits);
|
||
} else {
|
||
const uint32_t mant_odd = (f_bits >> 13) & 1; // resulting mantissa is odd
|
||
|
||
// update exponent, rounding bias part 1
|
||
// Equivalent to `f.u += ((unsigned int)(15 - 127) << 23) + 0xfff`, but
|
||
// without arithmetic overflow.
|
||
f_bits += 0xc8000fffU;
|
||
// rounding bias part 2
|
||
f_bits += mant_odd;
|
||
// take the bits!
|
||
o.x = static_cast<numext::uint16_t>(f_bits >> 13);
|
||
}
|
||
}
|
||
|
||
o.x |= static_cast<numext::uint16_t>(sign >> 16);
|
||
return o;
|
||
#endif
|
||
}
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h) {
|
||
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
|
||
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
|
||
return __half2float(h);
|
||
#elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16)
|
||
return static_cast<float>(h.x);
|
||
#elif defined(EIGEN_HAS_FP16_C)
|
||
#if EIGEN_COMP_MSVC
|
||
// MSVC does not have scalar instructions.
|
||
return _mm_cvtss_f32(_mm_cvtph_ps(_mm_set1_epi16(h.x)));
|
||
#else
|
||
return _cvtsh_ss(h.x);
|
||
#endif
|
||
#else
|
||
const float magic = Eigen::numext::bit_cast<float>(static_cast<uint32_t>(113 << 23));
|
||
const uint32_t shifted_exp = 0x7c00 << 13; // exponent mask after shift
|
||
uint32_t o_bits = (h.x & 0x7fff) << 13; // exponent/mantissa bits
|
||
const uint32_t exp = shifted_exp & o_bits; // just the exponent
|
||
o_bits += (127 - 15) << 23; // exponent adjust
|
||
|
||
// handle exponent special cases
|
||
if (exp == shifted_exp) { // Inf/NaN?
|
||
o_bits += (128 - 16) << 23; // extra exp adjust
|
||
} else if (exp == 0) { // Zero/Denormal?
|
||
o_bits += 1 << 23; // extra exp adjust
|
||
// renormalize
|
||
o_bits = Eigen::numext::bit_cast<uint32_t>(Eigen::numext::bit_cast<float>(o_bits) - magic);
|
||
}
|
||
|
||
o_bits |= (h.x & 0x8000) << 16; // sign bit
|
||
return Eigen::numext::bit_cast<float>(o_bits);
|
||
#endif
|
||
}
|
||
|
||
// --- standard functions ---
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isinf)(const half& a) {
|
||
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16)
|
||
return (numext::bit_cast<numext::uint16_t>(a.x) & 0x7fff) == 0x7c00;
|
||
#else
|
||
return (a.x & 0x7fff) == 0x7c00;
|
||
#endif
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isnan)(const half& a) {
|
||
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \
|
||
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
|
||
return __hisnan(a);
|
||
#elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16)
|
||
return (numext::bit_cast<numext::uint16_t>(a.x) & 0x7fff) > 0x7c00;
|
||
#else
|
||
return (a.x & 0x7fff) > 0x7c00;
|
||
#endif
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isfinite)(const half& a) {
|
||
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16)
|
||
return (numext::bit_cast<numext::uint16_t>(a.x) & 0x7fff) < 0x7c00;
|
||
#else
|
||
return (a.x & 0x7fff) < 0x7c00;
|
||
#endif
|
||
}
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) {
|
||
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
|
||
return half(vabsh_f16(a.x));
|
||
#elif defined(EIGEN_HAS_BUILTIN_FLOAT16)
|
||
half result;
|
||
result.x =
|
||
numext::bit_cast<_Float16>(static_cast<numext::uint16_t>(numext::bit_cast<numext::uint16_t>(a.x) & 0x7FFF));
|
||
return result;
|
||
#else
|
||
half result;
|
||
result.x = a.x & 0x7FFF;
|
||
return result;
|
||
#endif
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) {
|
||
#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \
|
||
defined(EIGEN_HIP_DEVICE_COMPILE)
|
||
return half(hexp(a));
|
||
#else
|
||
return half(::expf(float(a)));
|
||
#endif
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp2(const half& a) {
|
||
#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \
|
||
defined(EIGEN_HIP_DEVICE_COMPILE)
|
||
return half(hexp2(a));
|
||
#else
|
||
return half(::exp2f(float(a)));
|
||
#endif
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half expm1(const half& a) { return half(numext::expm1(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) {
|
||
#if (defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && \
|
||
EIGEN_CUDA_ARCH >= 530) || \
|
||
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
|
||
return half(hlog(a));
|
||
#else
|
||
return half(::logf(float(a)));
|
||
#endif
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log1p(const half& a) { return half(numext::log1p(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) { return half(::log10f(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log2(const half& a) {
|
||
return half(static_cast<float>(EIGEN_LOG2E) * ::logf(float(a)));
|
||
}
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) {
|
||
#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \
|
||
defined(EIGEN_HIP_DEVICE_COMPILE)
|
||
return half(hsqrt(a));
|
||
#else
|
||
return half(::sqrtf(float(a)));
|
||
#endif
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) {
|
||
return half(::powf(float(a), float(b)));
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atan2(const half& a, const half& b) {
|
||
return half(::atan2f(float(a), float(b)));
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sin(const half& a) { return half(::sinf(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half cos(const half& a) { return half(::cosf(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tan(const half& a) { return half(::tanf(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) { return half(::tanhf(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half asin(const half& a) { return half(::asinf(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half acos(const half& a) { return half(::acosf(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atan(const half& a) { return half(::atanf(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atanh(const half& a) { return half(::atanhf(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) {
|
||
#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \
|
||
defined(EIGEN_HIP_DEVICE_COMPILE)
|
||
return half(hfloor(a));
|
||
#else
|
||
return half(::floorf(float(a)));
|
||
#endif
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) {
|
||
#if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \
|
||
defined(EIGEN_HIP_DEVICE_COMPILE)
|
||
return half(hceil(a));
|
||
#else
|
||
return half(::ceilf(float(a)));
|
||
#endif
|
||
}
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half rint(const half& a) { return half(::rintf(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half round(const half& a) { return half(::roundf(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half trunc(const half& a) { return half(::truncf(float(a))); }
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half fmod(const half& a, const half& b) {
|
||
return half(::fmodf(float(a), float(b)));
|
||
}
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half(min)(const half& a, const half& b) { return b < a ? b : a; }
|
||
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half(max)(const half& a, const half& b) { return a < b ? b : a; }
|
||
|
||
EIGEN_DEVICE_FUNC inline half fma(const half& a, const half& b, const half& c) {
|
||
#if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC)
|
||
return half(vfmah_f16(c.x, a.x, b.x));
|
||
#elif defined(EIGEN_VECTORIZE_AVX512FP16)
|
||
// Reduces to vfmadd213sh.
|
||
return half(_mm_cvtsh_h(_mm_fmadd_ph(_mm_set_sh(a.x), _mm_set_sh(b.x), _mm_set_sh(c.x))));
|
||
#else
|
||
// Emulate FMA via float.
|
||
return half(numext::fma(static_cast<float>(a), static_cast<float>(b), static_cast<float>(c)));
|
||
#endif
|
||
}
|
||
|
||
#ifndef EIGEN_NO_IO
|
||
EIGEN_ALWAYS_INLINE std::ostream& operator<<(std::ostream& os, const half& v) {
|
||
os << static_cast<float>(v);
|
||
return os;
|
||
}
|
||
#endif
|
||
|
||
} // end namespace half_impl
|
||
|
||
// import Eigen::half_impl::half into Eigen namespace
|
||
// using half_impl::half;
|
||
|
||
namespace internal {
|
||
|
||
template <>
|
||
struct is_arithmetic<half> {
|
||
enum { value = true };
|
||
};
|
||
|
||
template <>
|
||
struct random_impl<half> {
|
||
enum : int { MantissaBits = 10 };
|
||
using Impl = random_impl<float>;
|
||
static EIGEN_DEVICE_FUNC inline half run(const half& x, const half& y) {
|
||
float result = Impl::run(x, y, MantissaBits);
|
||
return half(result);
|
||
}
|
||
static EIGEN_DEVICE_FUNC inline half run() {
|
||
float result = Impl::run(MantissaBits);
|
||
return half(result);
|
||
}
|
||
};
|
||
|
||
} // end namespace internal
|
||
|
||
template <>
|
||
struct NumTraits<Eigen::half> : GenericNumTraits<Eigen::half> {
|
||
enum { IsSigned = true, IsInteger = false, IsComplex = false, RequireInitialization = false };
|
||
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half epsilon() {
|
||
return half_impl::raw_uint16_to_half(0x0800);
|
||
}
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half dummy_precision() {
|
||
return half_impl::raw_uint16_to_half(0x211f); // Eigen::half(1e-2f);
|
||
}
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half highest() {
|
||
return half_impl::raw_uint16_to_half(0x7bff);
|
||
}
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half lowest() {
|
||
return half_impl::raw_uint16_to_half(0xfbff);
|
||
}
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half infinity() {
|
||
return half_impl::raw_uint16_to_half(0x7c00);
|
||
}
|
||
EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() {
|
||
return half_impl::raw_uint16_to_half(0x7e00);
|
||
}
|
||
};
|
||
|
||
} // end namespace Eigen
|
||
|
||
#undef _EIGEN_MAYBE_CONSTEXPR
|
||
|
||
namespace Eigen {
|
||
namespace numext {
|
||
|
||
#if defined(EIGEN_GPU_COMPILE_PHASE)
|
||
|
||
template <>
|
||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isnan)(const Eigen::half& h) {
|
||
return (half_impl::isnan)(h);
|
||
}
|
||
|
||
template <>
|
||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isinf)(const Eigen::half& h) {
|
||
return (half_impl::isinf)(h);
|
||
}
|
||
|
||
template <>
|
||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isfinite)(const Eigen::half& h) {
|
||
return (half_impl::isfinite)(h);
|
||
}
|
||
|
||
#endif
|
||
|
||
template <>
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bit_cast<Eigen::half, uint16_t>(const uint16_t& src) {
|
||
return Eigen::half(Eigen::half_impl::raw_uint16_to_half(src));
|
||
}
|
||
|
||
template <>
|
||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t bit_cast<uint16_t, Eigen::half>(const Eigen::half& src) {
|
||
return Eigen::half_impl::raw_half_as_uint16(src);
|
||
}
|
||
|
||
} // namespace numext
|
||
} // namespace Eigen
|
||
|
||
// Add the missing shfl* intrinsics.
|
||
// The __shfl* functions are only valid on HIP or _CUDA_ARCH_ >= 300.
|
||
// CUDA defines them for (__CUDA_ARCH__ >= 300 || !defined(__CUDA_ARCH__))
|
||
//
|
||
// HIP and CUDA prior to SDK 9.0 define
|
||
// __shfl, __shfl_up, __shfl_down, __shfl_xor for int and float
|
||
// CUDA since 9.0 deprecates those and instead defines
|
||
// __shfl_sync, __shfl_up_sync, __shfl_down_sync, __shfl_xor_sync,
|
||
// with native support for __half and __nv_bfloat16
|
||
//
|
||
// Note that the following are __device__ - only functions.
|
||
#if (defined(EIGEN_CUDACC) && (!defined(EIGEN_CUDA_ARCH) || EIGEN_CUDA_ARCH >= 300)) || defined(EIGEN_HIPCC)
|
||
|
||
#if defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 90000
|
||
|
||
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_sync(unsigned mask, Eigen::half var, int srcLane,
|
||
int width = warpSize) {
|
||
const __half h = var;
|
||
return static_cast<Eigen::half>(__shfl_sync(mask, h, srcLane, width));
|
||
}
|
||
|
||
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_up_sync(unsigned mask, Eigen::half var, unsigned int delta,
|
||
int width = warpSize) {
|
||
const __half h = var;
|
||
return static_cast<Eigen::half>(__shfl_up_sync(mask, h, delta, width));
|
||
}
|
||
|
||
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_down_sync(unsigned mask, Eigen::half var, unsigned int delta,
|
||
int width = warpSize) {
|
||
const __half h = var;
|
||
return static_cast<Eigen::half>(__shfl_down_sync(mask, h, delta, width));
|
||
}
|
||
|
||
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor_sync(unsigned mask, Eigen::half var, int laneMask,
|
||
int width = warpSize) {
|
||
const __half h = var;
|
||
return static_cast<Eigen::half>(__shfl_xor_sync(mask, h, laneMask, width));
|
||
}
|
||
|
||
#else // HIP or CUDA SDK < 9.0
|
||
|
||
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl(Eigen::half var, int srcLane, int width = warpSize) {
|
||
const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var));
|
||
return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl(ivar, srcLane, width)));
|
||
}
|
||
|
||
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_up(Eigen::half var, unsigned int delta, int width = warpSize) {
|
||
const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var));
|
||
return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl_up(ivar, delta, width)));
|
||
}
|
||
|
||
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_down(Eigen::half var, unsigned int delta, int width = warpSize) {
|
||
const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var));
|
||
return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl_down(ivar, delta, width)));
|
||
}
|
||
|
||
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width = warpSize) {
|
||
const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var));
|
||
return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl_xor(ivar, laneMask, width)));
|
||
}
|
||
|
||
#endif // HIP vs CUDA
|
||
#endif // __shfl*
|
||
|
||
// ldg() has an overload for __half_raw, but we also need one for Eigen::half.
|
||
#if (defined(EIGEN_CUDACC) && (!defined(EIGEN_CUDA_ARCH) || EIGEN_CUDA_ARCH >= 350)) || defined(EIGEN_HIPCC)
|
||
EIGEN_STRONG_INLINE __device__ Eigen::half __ldg(const Eigen::half* ptr) {
|
||
return Eigen::half_impl::raw_uint16_to_half(__ldg(reinterpret_cast<const Eigen::numext::uint16_t*>(ptr)));
|
||
}
|
||
#endif // __ldg
|
||
|
||
#if EIGEN_HAS_STD_HASH
|
||
namespace std {
|
||
template <>
|
||
struct hash<Eigen::half> {
|
||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const {
|
||
return static_cast<std::size_t>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(a));
|
||
}
|
||
};
|
||
} // end namespace std
|
||
#endif
|
||
|
||
namespace Eigen {
|
||
namespace internal {
|
||
|
||
template <>
|
||
struct cast_impl<float, half> {
|
||
EIGEN_DEVICE_FUNC static inline half run(const float& a) {
|
||
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
|
||
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
|
||
return __float2half(a);
|
||
#else
|
||
return half(a);
|
||
#endif
|
||
}
|
||
};
|
||
|
||
template <>
|
||
struct cast_impl<int, half> {
|
||
EIGEN_DEVICE_FUNC static inline half run(const int& a) {
|
||
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
|
||
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
|
||
return __float2half(static_cast<float>(a));
|
||
#else
|
||
return half(static_cast<float>(a));
|
||
#endif
|
||
}
|
||
};
|
||
|
||
template <>
|
||
struct cast_impl<half, float> {
|
||
EIGEN_DEVICE_FUNC static inline float run(const half& a) {
|
||
#if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \
|
||
(defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE))
|
||
return __half2float(a);
|
||
#else
|
||
return static_cast<float>(a);
|
||
#endif
|
||
}
|
||
};
|
||
|
||
} // namespace internal
|
||
} // namespace Eigen
|
||
|
||
#endif // EIGEN_HALF_H
|