mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-05 02:04:07 +08:00
200 lines
6.7 KiB
C++
200 lines
6.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_ROTATION2D_H
|
|
#define EIGEN_ROTATION2D_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \geometry_module \ingroup Geometry_Module
|
|
*
|
|
* \class Rotation2D
|
|
*
|
|
* \brief Represents a rotation/orientation in a 2 dimensional space.
|
|
*
|
|
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
|
|
*
|
|
* This class is equivalent to a single scalar representing a counter clock wise rotation
|
|
* as a single angle in radian. It provides some additional features such as the automatic
|
|
* conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
|
|
* interface to Quaternion in order to facilitate the writing of generic algorithms
|
|
* dealing with rotations.
|
|
*
|
|
* \sa class Quaternion, class Transform
|
|
*/
|
|
|
|
namespace internal {
|
|
|
|
template<typename _Scalar> struct traits<Rotation2D<_Scalar> >
|
|
{
|
|
typedef _Scalar Scalar;
|
|
};
|
|
} // end namespace internal
|
|
|
|
template<typename _Scalar>
|
|
class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
|
|
{
|
|
typedef RotationBase<Rotation2D<_Scalar>,2> Base;
|
|
|
|
public:
|
|
|
|
using Base::operator*;
|
|
|
|
enum { Dim = 2 };
|
|
/** the scalar type of the coefficients */
|
|
typedef _Scalar Scalar;
|
|
typedef Matrix<Scalar,2,1> Vector2;
|
|
typedef Matrix<Scalar,2,2> Matrix2;
|
|
|
|
protected:
|
|
|
|
Scalar m_angle;
|
|
|
|
public:
|
|
|
|
/** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
|
|
EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {}
|
|
|
|
/** Default constructor wihtout initialization. The represented rotation is undefined. */
|
|
EIGEN_DEVICE_FUNC Rotation2D() {}
|
|
|
|
/** Construct a 2D rotation from a 2x2 rotation matrix \a mat.
|
|
*
|
|
* \sa fromRotationMatrix()
|
|
*/
|
|
template<typename Derived>
|
|
EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m)
|
|
{
|
|
fromRotationMatrix(m.derived());
|
|
}
|
|
|
|
/** \returns the rotation angle */
|
|
EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; }
|
|
|
|
/** \returns a read-write reference to the rotation angle */
|
|
EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; }
|
|
|
|
/** \returns the rotation angle in [0,2pi] */
|
|
EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const {
|
|
Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
|
|
return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp;
|
|
}
|
|
|
|
/** \returns the rotation angle in [-pi,pi] */
|
|
EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const {
|
|
Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
|
|
if(tmp>Scalar(EIGEN_PI)) tmp -= Scalar(2*EIGEN_PI);
|
|
else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI);
|
|
return tmp;
|
|
}
|
|
|
|
/** \returns the inverse rotation */
|
|
EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); }
|
|
|
|
/** Concatenates two rotations */
|
|
EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const
|
|
{ return Rotation2D(m_angle + other.m_angle); }
|
|
|
|
/** Concatenates two rotations */
|
|
EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other)
|
|
{ m_angle += other.m_angle; return *this; }
|
|
|
|
/** Applies the rotation to a 2D vector */
|
|
EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const
|
|
{ return toRotationMatrix() * vec; }
|
|
|
|
template<typename Derived>
|
|
EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
|
|
EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const;
|
|
|
|
/** Set \c *this from a 2x2 rotation matrix \a mat.
|
|
* In other words, this function extract the rotation angle from the rotation matrix.
|
|
*
|
|
* This method is an alias for fromRotationMatrix()
|
|
*
|
|
* \sa fromRotationMatrix()
|
|
*/
|
|
template<typename Derived>
|
|
EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase<Derived>& m)
|
|
{ return fromRotationMatrix(m.derived()); }
|
|
|
|
/** \returns the spherical interpolation between \c *this and \a other using
|
|
* parameter \a t. It is in fact equivalent to a linear interpolation.
|
|
*/
|
|
EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
|
|
{
|
|
Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle();
|
|
return Rotation2D(m_angle + dist*t);
|
|
}
|
|
|
|
/** \returns \c *this with scalar type casted to \a NewScalarType
|
|
*
|
|
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
|
* then this function smartly returns a const reference to \c *this.
|
|
*/
|
|
template<typename NewScalarType>
|
|
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
|
|
{ return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
|
|
|
|
/** Copy constructor with scalar type conversion */
|
|
template<typename OtherScalarType>
|
|
EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
|
|
{
|
|
m_angle = Scalar(other.angle());
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); }
|
|
|
|
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
|
* determined by \a prec.
|
|
*
|
|
* \sa MatrixBase::isApprox() */
|
|
EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
|
|
{ return internal::isApprox(m_angle,other.m_angle, prec); }
|
|
|
|
};
|
|
|
|
/** \ingroup Geometry_Module
|
|
* single precision 2D rotation type */
|
|
typedef Rotation2D<float> Rotation2Df;
|
|
/** \ingroup Geometry_Module
|
|
* double precision 2D rotation type */
|
|
typedef Rotation2D<double> Rotation2Dd;
|
|
|
|
/** Set \c *this from a 2x2 rotation matrix \a mat.
|
|
* In other words, this function extract the rotation angle
|
|
* from the rotation matrix.
|
|
*/
|
|
template<typename Scalar>
|
|
template<typename Derived>
|
|
EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
|
|
{
|
|
EIGEN_USING_STD_MATH(atan2)
|
|
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
|
|
m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0));
|
|
return *this;
|
|
}
|
|
|
|
/** Constructs and \returns an equivalent 2x2 rotation matrix.
|
|
*/
|
|
template<typename Scalar>
|
|
typename Rotation2D<Scalar>::Matrix2
|
|
EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const
|
|
{
|
|
EIGEN_USING_STD_MATH(sin)
|
|
EIGEN_USING_STD_MATH(cos)
|
|
Scalar sinA = sin(m_angle);
|
|
Scalar cosA = cos(m_angle);
|
|
return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_ROTATION2D_H
|