chore: update formula

This commit is contained in:
srikanthccv 2025-06-03 01:14:40 +05:30
parent f730ab7035
commit fa4e4e77c4
2 changed files with 1188 additions and 187 deletions

View File

@ -4,11 +4,15 @@ import (
"fmt"
"math"
"sort"
"strconv"
"strings"
"sync"
"time"
"slices"
"github.com/SigNoz/govaluate"
"github.com/SigNoz/signoz/pkg/errors"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
)
type QueryBuilderFormula struct {
@ -21,107 +25,233 @@ type QueryBuilderFormula struct {
Functions []Function `json:"functions,omitempty"`
}
// FormulaEvaluator handles formula evaluation for QBv5 types
type FormulaEvaluator struct {
expression *govaluate.EvaluableExpression
canDefaultZero map[string]bool
functions map[string]govaluate.ExpressionFunction
type aggregationRef struct {
QueryName string
Index *int // Index-based reference (e.g., A.0)
Alias *string // Alias-based reference (e.g., A.my_alias)
}
// NewFormulaEvaluator creates a new formula evaluator
// seriesLookup provides lookup for series data
type seriesLookup struct {
// seriesKey -> timestamp -> value
data map[string]map[int64]float64
// seriesKey -> original series for metadata preservation
seriesMetadata map[string]*TimeSeries
}
// FormulaEvaluator handles formula evaluation b/w time series from different aggregations
type FormulaEvaluator struct {
expression *govaluate.EvaluableExpression
variables []string
canDefaultZero map[string]bool
// Parsed aggregation references from variables
aggRefs map[string]aggregationRef
timestampPool sync.Pool
valuesPool sync.Pool
}
// NewFormulaEvaluator creates a formula evaluator
func NewFormulaEvaluator(expressionStr string, canDefaultZero map[string]bool) (*FormulaEvaluator, error) {
functions := EvalFuncs()
expression, err := govaluate.NewEvaluableExpressionWithFunctions(expressionStr, functions)
if err != nil {
return nil, errors.NewInvalidInputf(errors.CodeInvalidInput, "failed to parse expression: %s, error: %s", expressionStr, err.Error())
return nil, errors.NewInvalidInputf(errors.CodeInvalidInput, "failed to parse expression")
}
return &FormulaEvaluator{
evaluator := &FormulaEvaluator{
expression: expression,
variables: expression.Vars(),
canDefaultZero: canDefaultZero,
functions: functions,
}, nil
}
aggRefs: make(map[string]aggregationRef),
}
// EvaluateFormula processes multiple time series data and evaluates the formula
func (fe *FormulaEvaluator) EvaluateFormula(timeSeriesData map[string]*TimeSeriesData) (*TimeSeriesData, error) {
// Convert TimeSeriesData to a flattened series map for processing
allSeries := fe.flattenTimeSeriesData(timeSeriesData)
// Find unique label sets for formula evaluation
uniqueLabelSets := fe.findUniqueLabelSets(allSeries)
// Process each unique label set
var resultSeries []*TimeSeries
for _, labelSet := range uniqueLabelSets {
series, err := fe.joinAndCalculate(allSeries, labelSet)
// Parse aggregation references from variables
for _, variable := range evaluator.variables {
aggRef, err := parseAggregationReference(variable)
if err != nil {
return nil, err
}
if series != nil && len(series.Values) > 0 {
resultSeries = append(resultSeries, series)
}
evaluator.aggRefs[variable] = aggRef
}
return &TimeSeriesData{
QueryName: "formula",
Aggregations: []*AggregationBucket{
{
Index: 0,
Alias: "formula_result",
Series: resultSeries,
},
},
}, nil
evaluator.timestampPool.New = func() any {
return make([]int64, 0, 1000)
}
evaluator.valuesPool.New = func() any {
return make(map[string]any, len(evaluator.variables))
}
return evaluator, nil
}
// flattenTimeSeriesData converts map of TimeSeriesData to a flat map of series by query name
func (fe *FormulaEvaluator) flattenTimeSeriesData(timeSeriesData map[string]*TimeSeriesData) map[string][]*TimeSeries {
result := make(map[string][]*TimeSeries)
// parseAggregationReference parses variable names like "A", "A.0", "A.my_alias"
func parseAggregationReference(variable string) (aggregationRef, error) {
parts := strings.Split(variable, ".")
for queryName, data := range timeSeriesData {
var allSeries []*TimeSeries
for _, bucket := range data.Aggregations {
allSeries = append(allSeries, bucket.Series...)
}
result[queryName] = allSeries
if len(parts) == 1 {
// Simple query reference like "A" - defaults to first aggregation (index 0)
defaultIndex := 0
return aggregationRef{
QueryName: parts[0],
Index: &defaultIndex,
}, nil
}
return result
if len(parts) == 2 {
queryName := parts[0]
reference := parts[1]
// Try to parse as index
if index, err := strconv.Atoi(reference); err == nil {
return aggregationRef{
QueryName: queryName,
Index: &index,
}, nil
}
// Otherwise treat as alias
return aggregationRef{
QueryName: queryName,
Alias: &reference,
}, nil
}
return aggregationRef{}, errors.NewInvalidInputf(errors.CodeInvalidInput, "invalid aggregation reference %q", variable)
}
// findUniqueLabelSets finds all unique label combinations across series that are referenced in the expression
func (fe *FormulaEvaluator) findUniqueLabelSets(allSeries map[string][]*TimeSeries) []map[string]string {
queriesInExpression := make(map[string]struct{})
for _, v := range fe.expression.Vars() {
queriesInExpression[v] = struct{}{}
// EvaluateFormula processes multiple time series with proper aggregation handling
func (fe *FormulaEvaluator) EvaluateFormula(timeSeriesData map[string]*TimeSeriesData) ([]*TimeSeries, error) {
// Build lookup structures for all referenced aggregations
lookup := fe.buildSeriesLookup(timeSeriesData)
// Find all unique label combinations across referenced series
uniqueLabelSets := fe.findUniqueLabelSets(lookup)
// Process each unique label set
var resultSeries []*TimeSeries
var wg sync.WaitGroup
resultChan := make(chan *TimeSeries, len(uniqueLabelSets))
semaphore := make(chan struct{}, 4) // Limit concurrency
for _, labelSet := range uniqueLabelSets {
wg.Add(1)
go func(labels []*Label) {
defer wg.Done()
semaphore <- struct{}{}
defer func() { <-semaphore }()
series := fe.evaluateForLabelSet(labels, lookup)
if series != nil && len(series.Values) > 0 {
resultChan <- series
}
}(labelSet)
}
var allLabelSets []map[string]string
go func() {
wg.Wait()
close(resultChan)
}()
// Collect all label sets from series that are referenced in the expression
for queryName, series := range allSeries {
if _, ok := queriesInExpression[queryName]; !ok {
for series := range resultChan {
resultSeries = append(resultSeries, series)
}
return resultSeries, nil
}
// buildSeriesLookup creates lookup structure for all referenced aggregations
func (fe *FormulaEvaluator) buildSeriesLookup(timeSeriesData map[string]*TimeSeriesData) *seriesLookup {
lookup := &seriesLookup{
data: make(map[string]map[int64]float64),
seriesMetadata: make(map[string]*TimeSeries),
}
for variable, aggRef := range fe.aggRefs {
data, exists := timeSeriesData[aggRef.QueryName]
if !exists {
continue
}
for _, s := range series {
labelMap := fe.labelsToMap(s.Labels)
allLabelSets = append(allLabelSets, labelMap)
// Find the specific aggregation bucket
var targetBucket *AggregationBucket
for _, bucket := range data.Aggregations {
if aggRef.Index != nil && bucket.Index == *aggRef.Index {
targetBucket = bucket
break
}
if aggRef.Alias != nil && bucket.Alias == *aggRef.Alias {
targetBucket = bucket
break
}
}
if targetBucket == nil {
continue
}
// Process all series in the target bucket
for seriesIdx, series := range targetBucket.Series {
seriesKey := fe.buildSeriesKey(variable, seriesIdx, series.Labels)
// Initialize timestamp map
if _, exists := lookup.data[seriesKey]; !exists {
lookup.data[seriesKey] = make(map[int64]float64, len(series.Values))
lookup.seriesMetadata[seriesKey] = series
}
// Store all timestamp-value pairs
for _, value := range series.Values {
lookup.data[seriesKey][value.Timestamp] = value.Value
}
}
}
// Sort by number of labels (descending) for subset detection optimization
return lookup
}
// buildSeriesKey creates a unique key for a series within a specific aggregation
func (fe *FormulaEvaluator) buildSeriesKey(variable string, seriesIndex int, labels []*Label) string {
// Create a deterministic key that includes variable and label information
var keyParts []string
keyParts = append(keyParts, variable)
keyParts = append(keyParts, strconv.Itoa(seriesIndex))
// Sort labels by key name for consistent ordering
sortedLabels := make([]*Label, len(labels))
copy(sortedLabels, labels)
sort.Slice(sortedLabels, func(i, j int) bool {
return sortedLabels[i].Key.Name < sortedLabels[j].Key.Name
})
for _, label := range sortedLabels {
keyParts = append(keyParts, fmt.Sprintf("%s=%v", label.Key.Name, label.Value))
}
return strings.Join(keyParts, "|")
}
// findUniqueLabelSets finds all unique label combinations across all referenced series
func (fe *FormulaEvaluator) findUniqueLabelSets(lookup *seriesLookup) [][]*Label {
var allLabelSets [][]*Label
// Collect all label sets from series metadata
for _, series := range lookup.seriesMetadata {
allLabelSets = append(allLabelSets, series.Labels)
}
// sort the label sets by the number of labels in descending order
sort.Slice(allLabelSets, func(i, j int) bool {
return len(allLabelSets[i]) > len(allLabelSets[j])
})
// Find unique label sets (remove subsets)
var uniqueSets []map[string]string
// Find unique label sets using proper label comparison
var uniqueSets [][]*Label
for _, labelSet := range allLabelSets {
isUnique := true
for _, uniqueLabelSet := range uniqueSets {
if fe.isSubset(uniqueLabelSet, labelSet) {
for _, uniqueSet := range uniqueSets {
if fe.isSubset(uniqueSet, labelSet) {
isUnique = false
break
}
@ -134,92 +264,130 @@ func (fe *FormulaEvaluator) findUniqueLabelSets(allSeries map[string][]*TimeSeri
return uniqueSets
}
// joinAndCalculate joins series with matching labels and evaluates the formula at each timestamp
func (fe *FormulaEvaluator) joinAndCalculate(allSeries map[string][]*TimeSeries, uniqueLabelSet map[string]string) (*TimeSeries, error) {
// Map to store values: queryName -> timestamp -> value
seriesMap := make(map[string]map[int64]float64)
uniqueTimestamps := make(map[int64]struct{})
func (fe *FormulaEvaluator) isSubset(labels1, labels2 []*Label) bool {
labelMap1 := make(map[string]any)
labelMap2 := make(map[string]any)
// Find matching series for each query and build lookup maps
for queryName, seriesList := range allSeries {
var matchingSeries *TimeSeries
for _, label := range labels1 {
labelMap1[label.Key.Name] = label.Value
}
for _, label := range labels2 {
labelMap2[label.Key.Name] = label.Value
}
// Find a series that matches the current label set
for _, series := range seriesList {
seriesLabelMap := fe.labelsToMap(series.Labels)
if fe.isSubset(uniqueLabelSet, seriesLabelMap) {
matchingSeries = series
break
}
for k, v := range labelMap2 {
if val, ok := labelMap1[k]; !ok || val != v {
return false
}
}
return true
}
// Build timestamp -> value mapping for quick lookup
if matchingSeries != nil {
if _, ok := seriesMap[queryName]; !ok {
seriesMap[queryName] = make(map[int64]float64)
}
// labelsEqual compares two label sets for equality
func (fe *FormulaEvaluator) labelsEqual(labels1, labels2 []*Label) bool {
if len(labels1) != len(labels2) {
return false
}
for _, point := range matchingSeries.Values {
seriesMap[queryName][point.Timestamp] = point.Value
uniqueTimestamps[point.Timestamp] = struct{}{}
// Create maps for comparison
map1 := make(map[string]any)
map2 := make(map[string]any)
for _, label := range labels1 {
map1[label.Key.Name] = label.Value
}
for _, label := range labels2 {
map2[label.Key.Name] = label.Value
}
if len(map1) != len(map2) {
return false
}
for k, v1 := range map1 {
if v2, exists := map2[k]; !exists || v1 != v2 {
return false
}
}
return true
}
// evaluateForLabelSet performs formula evaluation for a specific label set
func (fe *FormulaEvaluator) evaluateForLabelSet(targetLabels []*Label, lookup *seriesLookup) *TimeSeries {
// Find matching series for each variable
variableData := make(map[string]map[int64]float64)
var allTimestamps map[int64]struct{} = make(map[int64]struct{})
for variable := range fe.aggRefs {
// Find series with matching labels for this variable
for seriesKey, series := range lookup.seriesMetadata {
if strings.HasPrefix(seriesKey, variable+"|") && fe.isSubset(targetLabels, series.Labels) {
if timestampData, exists := lookup.data[seriesKey]; exists {
variableData[variable] = timestampData
// Collect all timestamps
for ts := range timestampData {
allTimestamps[ts] = struct{}{}
}
break // Found matching series for this variable
}
}
}
}
// Convert unique timestamps to sorted slice
timestamps := make([]int64, 0, len(uniqueTimestamps))
for timestamp := range uniqueTimestamps {
timestamps = append(timestamps, timestamp)
// Convert timestamps to sorted slice
timestamps := fe.timestampPool.Get().([]int64)
timestamps = timestamps[:0]
defer fe.timestampPool.Put(timestamps)
for ts := range allTimestamps {
timestamps = append(timestamps, ts)
}
sort.Slice(timestamps, func(i, j int) bool {
return timestamps[i] < timestamps[j]
})
slices.Sort(timestamps)
// Evaluate formula at each timestamp
var resultValues []*TimeSeriesValue
values := fe.valuesPool.Get().(map[string]any)
defer fe.valuesPool.Put(values)
for _, timestamp := range timestamps {
values := make(map[string]interface{})
// Clear previous values
for k := range values {
delete(values, k)
}
// Collect values for this timestamp
for queryName, series := range seriesMap {
if value, ok := series[timestamp]; ok {
values[queryName] = value
validCount := 0
for _, variable := range fe.variables {
if varData, exists := variableData[variable]; exists {
if value, exists := varData[timestamp]; exists {
values[variable] = value
validCount++
}
}
}
// Set default zeros where allowed
for _, variable := range fe.expression.Vars() {
if _, ok := values[variable]; !ok && fe.canDefaultZero[variable] {
// Apply default zeros where allowed
for _, variable := range fe.variables {
if _, exists := values[variable]; !exists && fe.canDefaultZero[variable] {
values[variable] = 0.0
validCount++
}
}
// Check if we have all required variables
canEvaluate := true
for _, variable := range fe.expression.Vars() {
if _, ok := values[variable]; !ok {
canEvaluate = false
break
}
}
if !canEvaluate {
// Skip if we don't have all required variables
if validCount != len(fe.variables) {
continue
}
// Evaluate the expression
// Evaluate expression
result, err := fe.expression.Evaluate(values)
if err != nil {
return nil, fmt.Errorf("expression evaluation failed at timestamp %d: %w", timestamp, err)
continue
}
value, ok := result.(float64)
if !ok {
return nil, fmt.Errorf("expression result is not float64: %T", result)
}
// Skip invalid values
if math.IsNaN(value) || math.IsInf(value, 0) {
if !ok || math.IsNaN(value) || math.IsInf(value, 0) {
continue
}
@ -229,129 +397,97 @@ func (fe *FormulaEvaluator) joinAndCalculate(allSeries map[string][]*TimeSeries,
})
}
// Convert label map back to Label slice
resultLabels := fe.mapToLabels(uniqueLabelSet)
if len(resultValues) == 0 {
return nil
}
// Preserve original label structure and metadata
resultLabels := make([]*Label, len(targetLabels))
copy(resultLabels, targetLabels)
return &TimeSeries{
Labels: resultLabels,
Values: resultValues,
}, nil
}
// Helper functions
// isSubset checks if 'sub' is a subset of 'super'
func (fe *FormulaEvaluator) isSubset(super, sub map[string]string) bool {
for k, v := range sub {
if val, ok := super[k]; !ok || val != v {
return false
}
}
return true
}
// labelsToMap converts Label slice to map for easier comparison
func (fe *FormulaEvaluator) labelsToMap(labels []*Label) map[string]string {
result := make(map[string]string)
for _, label := range labels {
if strVal, ok := label.Value.(string); ok {
result[label.Key.Name] = strVal
} else {
result[label.Key.Name] = convertValueToString(label.Value)
}
}
return result
}
// mapToLabels converts map back to Label slice
func (fe *FormulaEvaluator) mapToLabels(labelMap map[string]string) []*Label {
var labels []*Label
for key, value := range labelMap {
labels = append(labels, &Label{
Key: telemetrytypes.TelemetryFieldKey{
Name: key,
FieldDataType: telemetrytypes.FieldDataTypeString,
},
Value: value,
})
}
return labels
}
// EvalFuncs returns the supported mathematical functions for formula evaluation
// EvalFuncs returns mathematical functions
func EvalFuncs() map[string]govaluate.ExpressionFunction {
funcs := make(map[string]govaluate.ExpressionFunction)
pi180 := math.Pi / 180
rad180 := 180 / math.Pi
// Mathematical functions
funcs["exp"] = func(args ...interface{}) (interface{}, error) {
funcs["exp"] = func(args ...any) (any, error) {
return math.Exp(args[0].(float64)), nil
}
funcs["log"] = func(args ...interface{}) (interface{}, error) {
funcs["log"] = func(args ...any) (any, error) {
return math.Log(args[0].(float64)), nil
}
funcs["ln"] = func(args ...interface{}) (interface{}, error) {
funcs["ln"] = func(args ...any) (any, error) {
return math.Log(args[0].(float64)), nil
}
funcs["exp2"] = func(args ...interface{}) (interface{}, error) {
funcs["exp2"] = func(args ...any) (any, error) {
return math.Exp2(args[0].(float64)), nil
}
funcs["log2"] = func(args ...interface{}) (interface{}, error) {
funcs["log2"] = func(args ...any) (any, error) {
return math.Log2(args[0].(float64)), nil
}
funcs["exp10"] = func(args ...interface{}) (interface{}, error) {
funcs["exp10"] = func(args ...any) (any, error) {
return math.Pow10(int(args[0].(float64))), nil
}
funcs["log10"] = func(args ...interface{}) (interface{}, error) {
funcs["log10"] = func(args ...any) (any, error) {
return math.Log10(args[0].(float64)), nil
}
funcs["sqrt"] = func(args ...interface{}) (interface{}, error) {
funcs["sqrt"] = func(args ...any) (any, error) {
return math.Sqrt(args[0].(float64)), nil
}
funcs["cbrt"] = func(args ...interface{}) (interface{}, error) {
funcs["cbrt"] = func(args ...any) (any, error) {
return math.Cbrt(args[0].(float64)), nil
}
funcs["erf"] = func(args ...interface{}) (interface{}, error) {
funcs["erf"] = func(args ...any) (any, error) {
return math.Erf(args[0].(float64)), nil
}
funcs["erfc"] = func(args ...interface{}) (interface{}, error) {
funcs["erfc"] = func(args ...any) (any, error) {
return math.Erfc(args[0].(float64)), nil
}
funcs["lgamma"] = func(args ...interface{}) (interface{}, error) {
funcs["lgamma"] = func(args ...any) (any, error) {
v, _ := math.Lgamma(args[0].(float64))
return v, nil
}
funcs["tgamma"] = func(args ...interface{}) (interface{}, error) {
funcs["tgamma"] = func(args ...any) (any, error) {
return math.Gamma(args[0].(float64)), nil
}
// Trigonometric functions
funcs["sin"] = func(args ...interface{}) (interface{}, error) {
funcs["sin"] = func(args ...any) (any, error) {
return math.Sin(args[0].(float64)), nil
}
funcs["cos"] = func(args ...interface{}) (interface{}, error) {
funcs["cos"] = func(args ...any) (any, error) {
return math.Cos(args[0].(float64)), nil
}
funcs["tan"] = func(args ...interface{}) (interface{}, error) {
funcs["tan"] = func(args ...any) (any, error) {
return math.Tan(args[0].(float64)), nil
}
funcs["asin"] = func(args ...interface{}) (interface{}, error) {
funcs["asin"] = func(args ...any) (any, error) {
return math.Asin(args[0].(float64)), nil
}
funcs["acos"] = func(args ...interface{}) (interface{}, error) {
funcs["acos"] = func(args ...any) (any, error) {
return math.Acos(args[0].(float64)), nil
}
funcs["atan"] = func(args ...interface{}) (interface{}, error) {
funcs["atan"] = func(args ...any) (any, error) {
return math.Atan(args[0].(float64)), nil
}
// Utility functions
funcs["degrees"] = func(args ...interface{}) (interface{}, error) {
return args[0].(float64) * 180 / math.Pi, nil
// Utility functions (optimized with pre-computed constants)
funcs["degrees"] = func(args ...any) (any, error) {
return args[0].(float64) * rad180, nil
}
funcs["radians"] = func(args ...interface{}) (interface{}, error) {
return args[0].(float64) * math.Pi / 180, nil
funcs["radians"] = func(args ...any) (any, error) {
return args[0].(float64) * pi180, nil
}
funcs["now"] = func(args ...interface{}) (interface{}, error) {
funcs["now"] = func(args ...any) (any, error) {
return float64(time.Now().Unix()), nil
}

View File

@ -0,0 +1,865 @@
package querybuildertypesv5
import (
"testing"
"github.com/SigNoz/signoz/pkg/types/telemetrytypes"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func createFormulaTestTimeSeriesData(queryName string, series []*TimeSeries) *TimeSeriesData {
return &TimeSeriesData{
QueryName: queryName,
Aggregations: []*AggregationBucket{
{
Index: 0,
Alias: queryName + "_agg",
Series: series,
},
},
}
}
func createLabels(labelMap map[string]string) []*Label {
var labels []*Label
for key, value := range labelMap {
labels = append(labels, &Label{
Key: telemetrytypes.TelemetryFieldKey{
Name: key,
FieldDataType: telemetrytypes.FieldDataTypeString,
},
Value: value,
})
}
return labels
}
func createValues(points map[int64]float64) []*TimeSeriesValue {
var values []*TimeSeriesValue
for timestamp, value := range points {
values = append(values, &TimeSeriesValue{
Timestamp: timestamp,
Value: value,
})
}
return values
}
func TestFindUniqueLabelSets(t *testing.T) {
tests := []struct {
name string
tsData map[string]*TimeSeriesData
expression string
expected int // number of unique label sets
}{
{
name: "two distinct label sets",
tsData: map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "frontend",
"operation": "GET /api",
}),
Values: createValues(map[int64]float64{1: 10}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "redis",
}),
Values: createValues(map[int64]float64{1: 30}),
},
}),
},
expression: "A + B",
expected: 2,
},
{
name: "subset elimination test",
tsData: map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "frontend",
"operation": "GET /api",
}),
Values: createValues(map[int64]float64{1: 10}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "frontend",
}),
Values: createValues(map[int64]float64{1: 30}),
},
}),
"C": createFormulaTestTimeSeriesData("C", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"operation": "PUT /api",
}),
Values: createValues(map[int64]float64{1: 30}),
},
}),
"D": createFormulaTestTimeSeriesData("D", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "frontend",
"http_status": "200",
}),
Values: createValues(map[int64]float64{1: 30}),
},
}),
},
expression: "A + B + C + D",
expected: 3, // Three unique label sets after subset elimination
},
{
name: "empty series",
tsData: map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{}),
},
expression: "A + B",
expected: 0,
},
{
name: "overlapping labels",
tsData: map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "frontend",
"operation": "GET /api",
}),
Values: createValues(map[int64]float64{1: 10}),
},
{
Labels: createLabels(map[string]string{
"service_name": "redis",
"operation": "GET /api",
}),
Values: createValues(map[int64]float64{1: 12}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "redis",
}),
Values: createValues(map[int64]float64{1: 30}),
},
{
Labels: createLabels(map[string]string{
"service_name": "frontend",
}),
Values: createValues(map[int64]float64{1: 25}),
},
}),
},
expression: "A + B",
expected: 2, // Two unique label sets after subset detection
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
evaluator, err := NewFormulaEvaluator(tt.expression, map[string]bool{"A": false, "B": false})
require.NoError(t, err)
lookup := evaluator.buildSeriesLookup(tt.tsData)
uniqueLabelSets := evaluator.findUniqueLabelSets(lookup)
assert.Equal(t, tt.expected, len(uniqueLabelSets))
})
}
}
func TestBasicFormulaEvaluation(t *testing.T) {
tests := []struct {
name string
tsData map[string]*TimeSeriesData
expression string
expected int // number of result series
}{
{
name: "simple addition",
tsData: map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "frontend",
"operation": "GET /api",
}),
Values: createValues(map[int64]float64{
1: 10,
2: 20,
}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "redis",
}),
Values: createValues(map[int64]float64{
1: 30,
3: 40,
}),
},
}),
},
expression: "A + B",
expected: 2,
},
{
name: "division with zeros",
tsData: map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{}),
Values: createValues(map[int64]float64{
1: 10,
2: 0,
}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{}),
Values: createValues(map[int64]float64{
1: 0,
3: 10,
}),
},
}),
},
expression: "A/B",
expected: 1,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
evaluator, err := NewFormulaEvaluator(tt.expression, map[string]bool{"A": true, "B": true})
require.NoError(t, err)
result, err := evaluator.EvaluateFormula(tt.tsData)
require.NoError(t, err)
require.NotNil(t, result)
assert.Equal(t, tt.expected, len(result))
})
}
}
func TestErrorRateCalculation(t *testing.T) {
tsData := map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "frontend",
}),
Values: createValues(map[int64]float64{
1: 10,
2: 20,
}),
},
{
Labels: createLabels(map[string]string{
"service_name": "redis",
}),
Values: createValues(map[int64]float64{
1: 12,
2: 45,
}),
},
{
Labels: createLabels(map[string]string{
"service_name": "route",
}),
Values: createValues(map[int64]float64{
1: 2,
2: 45,
}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "redis",
}),
Values: createValues(map[int64]float64{
1: 6,
2: 9,
}),
},
}),
}
evaluator, err := NewFormulaEvaluator("B/A", map[string]bool{"A": true, "B": true})
require.NoError(t, err)
result, err := evaluator.EvaluateFormula(tsData)
require.NoError(t, err)
require.NotNil(t, result)
// Should have 3 result series (frontend gets 0, redis gets calculated values, route gets 0)
assert.Equal(t, 3, len(result))
// Find the redis series and check its values
for _, series := range result {
for _, label := range series.Labels {
if label.Key.Name == "service_name" && label.Value == "redis" {
assert.Len(t, series.Values, 2)
assert.Equal(t, 0.5, series.Values[0].Value) // 6/12
assert.Equal(t, 0.2, series.Values[1].Value) // 9/45
}
}
}
}
func TestNoGroupKeysOnLeftSide(t *testing.T) {
tsData := map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "frontend",
}),
Values: createValues(map[int64]float64{
1: 10,
2: 20,
}),
},
{
Labels: createLabels(map[string]string{
"service_name": "redis",
}),
Values: createValues(map[int64]float64{
1: 12,
2: 45,
}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{}),
Values: createValues(map[int64]float64{
1: 22,
2: 65,
}),
},
}),
}
evaluator, err := NewFormulaEvaluator("B/A", map[string]bool{"A": true, "B": true})
require.NoError(t, err)
result, err := evaluator.EvaluateFormula(tsData)
require.NoError(t, err)
require.NotNil(t, result)
// Should have 2 result series (frontend and redis)
assert.Equal(t, 2, len(result))
// Verify calculations
expectedValues := map[string][]float64{
"frontend": {2.2, 3.25}, // 22/10, 65/20
"redis": {1.8333333333333333, 1.4444444444444444}, // 22/12, 65/45
}
for _, series := range result {
for _, label := range series.Labels {
if label.Key.Name == "service_name" {
serviceName := label.Value.(string)
if expected, exists := expectedValues[serviceName]; exists {
assert.Len(t, series.Values, len(expected))
for i, expectedVal := range expected {
assert.InDelta(t, expectedVal, series.Values[i].Value, 0.0001)
}
}
}
}
}
}
func TestSameGroupKeys(t *testing.T) {
tsData := map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-1",
"state": "running",
}),
Values: createValues(map[int64]float64{
1: 10,
2: 20,
4: 40,
5: 50,
7: 70,
}),
},
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-2",
"state": "idle",
}),
Values: createValues(map[int64]float64{
1: 12,
2: 45,
3: 30,
4: 40,
5: 50,
}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-1",
"state": "running",
}),
Values: createValues(map[int64]float64{
1: 22,
2: 65,
3: 30,
4: 40,
5: 50,
}),
},
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-2",
"state": "idle",
}),
Values: createValues(map[int64]float64{
1: 22,
2: 65,
4: 40,
5: 50,
}),
},
}),
}
evaluator, err := NewFormulaEvaluator("A/B", map[string]bool{"A": true, "B": true})
require.NoError(t, err)
result, err := evaluator.EvaluateFormula(tsData)
require.NoError(t, err)
require.NotNil(t, result)
// Should have 2 result series
assert.Equal(t, 2, len(result))
// Verify that we get the expected calculations
for _, series := range result {
hostName := ""
state := ""
for _, label := range series.Labels {
if label.Key.Name == "host_name" {
hostName = label.Value.(string)
}
if label.Key.Name == "state" {
state = label.Value.(string)
}
}
if hostName == "ip-10-420-69-1" && state == "running" {
// Check specific calculations
assert.Equal(t, float64(10)/float64(22), series.Values[0].Value) // timestamp 1
assert.InDelta(t, 0.3076923076923077, series.Values[1].Value, 0.0001) // timestamp 2
}
}
}
func TestGroupKeysDifferentValues(t *testing.T) {
tsData := map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-1",
"state": "running",
}),
Values: createValues(map[int64]float64{
1: 10,
2: 20,
4: 40,
5: 50,
7: 70,
}),
},
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-2",
"state": "idle",
}),
Values: createValues(map[int64]float64{
1: 12,
2: 45,
3: 30,
4: 40,
5: 50,
}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-1",
"state": "not_running_chalamet",
}),
Values: createValues(map[int64]float64{
1: 22,
2: 65,
3: 30,
4: 40,
5: 50,
}),
},
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-2",
"state": "busy",
}),
Values: createValues(map[int64]float64{
1: 22,
2: 65,
4: 40,
5: 50,
}),
},
}),
}
evaluator, err := NewFormulaEvaluator("A/B", map[string]bool{"A": true, "B": true})
require.NoError(t, err)
result, err := evaluator.EvaluateFormula(tsData)
require.NoError(t, err)
require.NotNil(t, result)
// Should have 2 result series with all zero values (no label matches)
assert.Equal(t, 2, len(result))
for _, series := range result {
for _, value := range series.Values {
assert.Equal(t, 0.0, value.Value) // All values should be 0 due to default zero
}
}
}
func TestLeftSideSuperset(t *testing.T) {
tsData := map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-1",
"state": "running",
"os.type": "linux",
}),
Values: createValues(map[int64]float64{
1: 10,
2: 20,
4: 40,
5: 50,
7: 70,
}),
},
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-2",
"state": "idle",
"os.type": "linux",
}),
Values: createValues(map[int64]float64{
1: 12,
2: 45,
3: 30,
4: 40,
5: 50,
}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"state": "running",
"os.type": "linux",
}),
Values: createValues(map[int64]float64{
1: 22,
2: 65,
3: 30,
4: 40,
5: 50,
}),
},
{
Labels: createLabels(map[string]string{
"state": "busy",
"os.type": "linux",
}),
Values: createValues(map[int64]float64{
1: 22,
2: 65,
4: 40,
5: 50,
}),
},
}),
}
evaluator, err := NewFormulaEvaluator("A/B", map[string]bool{"A": true, "B": true})
require.NoError(t, err)
result, err := evaluator.EvaluateFormula(tsData)
require.NoError(t, err)
require.NotNil(t, result)
// Should have 2 result series
assert.Equal(t, 2, len(result))
// Find the running series and verify calculation
for _, series := range result {
hasRunning := false
hasHost := false
for _, label := range series.Labels {
if label.Key.Name == "state" && label.Value == "running" {
hasRunning = true
}
if label.Key.Name == "host_name" {
hasHost = true
}
}
if hasRunning && hasHost {
// This should be the matched series
assert.Equal(t, float64(10)/float64(22), series.Values[0].Value) // timestamp 1
assert.InDelta(t, 0.3076923076923077, series.Values[1].Value, 0.0001) // timestamp 2
}
}
}
func TestNoDefaultZero(t *testing.T) {
tsData := map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "frontend",
"operation": "GET /api",
}),
Values: createValues(map[int64]float64{
1: 10,
2: 20,
}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "redis",
}),
Values: createValues(map[int64]float64{
1: 30,
3: 40,
}),
},
}),
}
// No default zero - should have no results since label sets don't match
evaluator, err := NewFormulaEvaluator("A + B", map[string]bool{"A": false, "B": false})
require.NoError(t, err)
result, err := evaluator.EvaluateFormula(tsData)
require.NoError(t, err)
// Should have no result series since labels don't match and no default zero
assert.Equal(t, 0, len(result))
}
func TestMixedQueries(t *testing.T) {
tsData := map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "frontend",
"operation": "GET /api",
}),
Values: createValues(map[int64]float64{
1: 10,
2: 20,
}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "frontend",
"operation": "GET /api",
}),
Values: createValues(map[int64]float64{
1: 10,
2: 20,
}),
},
}),
"C": createFormulaTestTimeSeriesData("C", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"service_name": "redis",
}),
Values: createValues(map[int64]float64{
1: 30,
2: 50,
3: 45,
}),
},
}),
}
evaluator, err := NewFormulaEvaluator("A / B", map[string]bool{"A": true, "B": true, "C": true})
require.NoError(t, err)
result, err := evaluator.EvaluateFormula(tsData)
require.NoError(t, err)
require.NotNil(t, result)
// Should have 1 result series (only A and B have matching labels)
assert.Equal(t, 1, len(result))
// Verify the result is A/B = 1 for matching timestamps
series := result[0]
assert.Len(t, series.Values, 2)
assert.Equal(t, 1.0, series.Values[0].Value) // 10/10
assert.Equal(t, 1.0, series.Values[1].Value) // 20/20
}
func TestComplexExpression(t *testing.T) {
tsData := map[string]*TimeSeriesData{
"A": createFormulaTestTimeSeriesData("A", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"state": "running",
}),
Values: createValues(map[int64]float64{
1: 10,
2: 20,
4: 40,
5: 50,
7: 70,
}),
},
{
Labels: createLabels(map[string]string{
"state": "idle",
}),
Values: createValues(map[int64]float64{
1: 12,
2: 45,
3: 30,
4: 40,
5: 50,
}),
},
}),
"B": createFormulaTestTimeSeriesData("B", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-1",
"state": "running",
}),
Values: createValues(map[int64]float64{
1: 22,
2: 65,
3: 30,
4: 40,
5: 50,
}),
},
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-2",
"state": "idle",
}),
Values: createValues(map[int64]float64{
1: 22,
2: 65,
4: 40,
5: 50,
}),
},
}),
"C": createFormulaTestTimeSeriesData("C", []*TimeSeries{
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-1",
"state": "running",
"os.type": "linux",
}),
Values: createValues(map[int64]float64{
1: 10,
2: 20,
4: 40,
5: 50,
7: 70,
}),
},
{
Labels: createLabels(map[string]string{
"host_name": "ip-10-420-69-2",
"state": "idle",
"os.type": "linux",
}),
Values: createValues(map[int64]float64{
1: 12,
2: 45,
3: 30,
4: 40,
5: 50,
}),
},
}),
}
// Complex expression: A/B + C
evaluator, err := NewFormulaEvaluator("A/B + C", map[string]bool{"A": true, "B": true, "C": true})
require.NoError(t, err)
result, err := evaluator.EvaluateFormula(tsData)
require.NoError(t, err)
require.NotNil(t, result)
// Should have 2 result series
assert.Equal(t, 2, len(result))
// Verify the complex calculation: A/B + C for the first series
for _, series := range result {
hasRunning := false
hasHost := false
for _, label := range series.Labels {
if label.Key.Name == "state" && label.Value == "running" {
hasRunning = true
}
if label.Key.Name == "host_name" {
hasHost = true
}
}
if hasRunning && hasHost {
// timestamp 1: 10/22 + 10 = 10.45454545454545
expectedVal1 := 10.0/22.0 + 10.0
assert.InDelta(t, expectedVal1, series.Values[0].Value, 0.0001)
// timestamp 2: 20/65 + 20 = 20.3076923076923077
expectedVal2 := 20.0/65.0 + 20.0
assert.InDelta(t, expectedVal2, series.Values[1].Value, 0.0001)
}
}
}