rembg/README.md
2023-04-20 21:39:13 -03:00

343 lines
12 KiB
Markdown

# Rembg
[![Downloads](https://pepy.tech/badge/rembg)](https://pepy.tech/project/rembg)
[![Downloads](https://pepy.tech/badge/rembg/month)](https://pepy.tech/project/rembg)
[![Downloads](https://pepy.tech/badge/rembg/week)](https://pepy.tech/project/rembg)
[![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://img.shields.io/badge/License-MIT-blue.svg)
[![Hugging Face Spaces](https://img.shields.io/badge/🤗%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/KenjieDec/RemBG)
[![Streamlit App](https://img.shields.io/badge/🎈%20Streamlit%20Community-Cloud-blue)](https://bgremoval.streamlit.app/)
Rembg is a tool to remove images background.
<p style="display: flex;align-items: center;justify-content: center;">
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/car-1.jpg" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/car-1.out.png" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/car-2.jpg" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/car-2.out.png" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/car-3.jpg" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/car-3.out.png" width="100" />
</p>
<p style="display: flex;align-items: center;justify-content: center;">
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/animal-1.jpg" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/animal-1.out.png" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/animal-2.jpg" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/animal-2.out.png" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/animal-3.jpg" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/animal-3.out.png" width="100" />
</p>
<p style="display: flex;align-items: center;justify-content: center;">
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/girl-1.jpg" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/girl-1.out.png" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/girl-2.jpg" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/girl-2.out.png" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/girl-3.jpg" width="100" />
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/examples/girl-3.out.png" width="100" />
</p>
**If this project has helped you, please consider making a [donation](https://www.buymeacoffee.com/danielgatis).**
## Sponsor
<table>
<tr>
<td align="center" vertical-align="center">
<a href="https://photoroom.com/api/remove-background?utm_source=rembg&utm_medium=github_webpage&utm_campaign=sponsor" >
<img src="https://font-cdn.photoroom.com/media/api-logo.png" width="120px;" alt="Unsplash" />
</a>
</td>
<td align="center" vertical-align="center">
<b>PhotoRoom Remove Background API</b>
<br />
<a href="https://photoroom.com/api/remove-background?utm_source=rembg&utm_medium=github_webpage&utm_campaign=sponsor">https://photoroom.com/api</a>
<br />
<p width="200px">
Fast and accurate background remover API<br/>
</p>
</td>
</tr>
</table>
## Requirements
```
python: >3.7, <3.11
```
## Installation
CPU support:
```bash
pip install rembg
```
GPU support:
First of all, you need to check if your system supports the `onnxruntime-gpu`.
Go to https://onnxruntime.ai and check the installation matrix.
<p style="display: flex;align-items: center;justify-content: center;">
<img src="https://raw.githubusercontent.com/danielgatis/rembg/master/onnxruntime-installation-matrix.png" width="400" />
</p>
If yes, just run:
```bash
pip install rembg[gpu]
```
## Usage as a cli
After the installation step you can use rembg just typing `rembg` in your terminal window.
The `rembg` command has 3 subcommands, one for each input type:
- `i` for files
- `p` for folders
- `s` for http server
You can get help about the main command using:
```
rembg --help
```
As well, about all the subcommands using:
```
rembg <COMMAND> --help
```
### rembg `i`
Used when input and output are files.
Remove the background from a remote image
```
curl -s http://input.png | rembg i > output.png
```
Remove the background from a local file
```
rembg i path/to/input.png path/to/output.png
```
Remove the background specifying a model
```
rembg i -m u2netp path/to/input.png path/to/output.png
```
Remove the background returning only the mask
```
rembg i -om path/to/input.png path/to/output.png
```
Remove the background applying an alpha matting
```
rembg i -a path/to/input.png path/to/output.png
```
Passing extras parameters
```
rembg i -m sam -x '{"input_labels": [1], "input_points": [[100,100]]}' path/to/input.png path/to/output.png
```
### rembg `p`
Used when input and output are folders.
Remove the background from all images in a folder
```
rembg p path/to/input path/to/output
```
Same as before, but watching for new/changed files to process
```
rembg p -w path/to/input path/to/output
```
### rembg `s`
Used to start http server.
To see the complete endpoints documentation, go to: `http://localhost:5000/docs`.
Remove the background from an image url
```
curl -s "http://localhost:5000/?url=http://input.png" -o output.png
```
Remove the background from an uploaded image
```
curl -s -F file=@/path/to/input.jpg "http://localhost:5000" -o output.png
```
## Usage as a library
Input and output as bytes
```python
from rembg import remove
input_path = 'input.png'
output_path = 'output.png'
with open(input_path, 'rb') as i:
with open(output_path, 'wb') as o:
input = i.read()
output = remove(input)
o.write(output)
```
Input and output as a PIL image
```python
from rembg import remove
from PIL import Image
input_path = 'input.png'
output_path = 'output.png'
input = Image.open(input_path)
output = remove(input)
output.save(output_path)
```
Input and output as a numpy array
```python
from rembg import remove
import cv2
input_path = 'input.png'
output_path = 'output.png'
input = cv2.imread(input_path)
output = remove(input)
cv2.imwrite(output_path, output)
```
How to iterate over files in a performatic way
```python
from pathlib import Path
from rembg import remove, new_session
session = new_session()
for file in Path('path/to/folder').glob('*.png'):
input_path = str(file)
output_path = str(file.parent / (file.stem + ".out.png"))
with open(input_path, 'rb') as i:
with open(output_path, 'wb') as o:
input = i.read()
output = remove(input, session=session)
o.write(output)
```
## Usage as a docker
Just replace the `rembg` command for `docker run danielgatis/rembg`.
Try this:
```
docker run danielgatis/rembg i path/to/input.png path/to/output.png
```
## Models
All models are downloaded and saved in the user home folder in the `.u2net` directory.
The available models are:
- u2net ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net.onnx), [source](https://github.com/xuebinqin/U-2-Net)): A pre-trained model for general use cases.
- u2netp ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2netp.onnx), [source](https://github.com/xuebinqin/U-2-Net)): A lightweight version of u2net model.
- u2net_human_seg ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net_human_seg.onnx), [source](https://github.com/xuebinqin/U-2-Net)): A pre-trained model for human segmentation.
- u2net_cloth_seg ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net_cloth_seg.onnx), [source](https://github.com/levindabhi/cloth-segmentation)): A pre-trained model for Cloths Parsing from human portrait. Here clothes are parsed into 3 category: Upper body, Lower body and Full body.
- silueta ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/silueta.onnx), [source](https://github.com/xuebinqin/U-2-Net/issues/295)): Same as u2net but the size is reduced to 43Mb.
- isnet-general-use ([download](https://github.com/danielgatis/rembg/releases/download/v0.0.0/isnet-general-use.onnx), [source](https://github.com/xuebinqin/DIS)): A new pre-trained model for general use cases.
- sam ([encoder](https://github.com/danielgatis/rembg/releases/download/v0.0.0/vit_b-encoder-quant.onnx), [decoder](https://github.com/danielgatis/rembg/releases/download/v0.0.0/vit_b-decoder-quant.onnx), [source](https://github.com/facebookresearch/segment-anything)): The Segment Anything Model (SAM).
### Some differences between the models result
<table>
<tr>
<th>original</th>
<th>u2net</th>
<th>u2netp</th>
<th>u2net_human_seg</th>
<th>u2net_cloth_seg</th>
<th>silueta</th>
<th>isnet-general-use</th>
<th>sam</th>
</tr>
<tr>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/fixtures/car-1.jpg" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/car-1.u2net.png" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/car-1.u2netp.png" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/car-1.u2net_human_seg.png" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/car-1.u2net_cloth_seg.png" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/car-1.silueta.png" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/car-1.isnet-general-use.png" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/car-1.sam.png" width="100" /></th>
</tr>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/fixtures/cloth-1.jpg" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/cloth-1.u2net.png" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/cloth-1.u2netp.png" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/cloth-1.u2net_human_seg.png" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/cloth-1.u2net_cloth_seg.png" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/cloth-1.silueta.png" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/cloth-1.isnet-general-use.png" width="100" /></th>
<th><img src="https://raw.githubusercontent.com/danielgatis/rembg/master/tests/results/cloth-1.sam.png" width="100" /></th>
</tr>
</table>
### How to train your own model
If You need more fine tunned models try this:
https://github.com/danielgatis/rembg/issues/193#issuecomment-1055534289
## Some video tutorials
- https://www.youtube.com/watch?v=3xqwpXjxyMQ
- https://www.youtube.com/watch?v=dFKRGXdkGJU
- https://www.youtube.com/watch?v=Ai-BS_T7yjE
- https://www.youtube.com/watch?v=dFKRGXdkGJU
- https://www.youtube.com/watch?v=D7W-C0urVcQ
## References
- https://arxiv.org/pdf/2005.09007.pdf
- https://github.com/NathanUA/U-2-Net
- https://github.com/pymatting/pymatting
## Buy me a coffee
Liked some of my work? Buy me a coffee (or more likely a beer)
<a href="https://www.buymeacoffee.com/danielgatis" target="_blank"><img src="https://bmc-cdn.nyc3.digitaloceanspaces.com/BMC-button-images/custom_images/orange_img.png" alt="Buy Me A Coffee" style="height: auto !important;width: auto !important;"></a>
## License
Copyright (c) 2020-present [Daniel Gatis](https://github.com/danielgatis)
Licensed under [MIT License](./LICENSE.txt)