mirror of
https://git.mirrors.martin98.com/https://github.com/prusa3d/PrusaSlicer.git
synced 2025-05-26 08:07:44 +08:00
777 lines
37 KiB
C++
777 lines
37 KiB
C++
#include "../Layer.hpp"
|
|
#include "../GCode.hpp"
|
|
#include "../EdgeGrid.hpp"
|
|
#include "../Print.hpp"
|
|
#include "../Polygon.hpp"
|
|
#include "../ExPolygon.hpp"
|
|
#include "../ClipperUtils.hpp"
|
|
#include "../SVG.hpp"
|
|
#include "AvoidCrossingPerimeters.hpp"
|
|
|
|
#include <numeric>
|
|
#include <unordered_set>
|
|
|
|
namespace Slic3r {
|
|
|
|
struct TravelPoint
|
|
{
|
|
Point point;
|
|
// Index of the polygon containing this point. A negative value indicates that the point is not on any border
|
|
int border_idx;
|
|
};
|
|
|
|
struct Intersection
|
|
{
|
|
// Index of the polygon containing this point of intersection.
|
|
size_t border_idx;
|
|
// Index of the line on the polygon containing this point of intersection.
|
|
size_t line_idx;
|
|
// Point of intersection projected on the travel path.
|
|
Point point_transformed;
|
|
// Point of intersection.
|
|
Point point;
|
|
|
|
Intersection(size_t border_idx, size_t line_idx, const Point &point_transformed, const Point &point)
|
|
: border_idx(border_idx), line_idx(line_idx), point_transformed(point_transformed), point(point){};
|
|
|
|
inline bool operator<(const Intersection &other) const { return this->point_transformed.x() < other.point_transformed.x(); }
|
|
};
|
|
|
|
struct AllIntersectionsVisitor
|
|
{
|
|
AllIntersectionsVisitor(const EdgeGrid::Grid &grid, std::vector<Intersection> &intersections)
|
|
: grid(grid), intersections(intersections)
|
|
{}
|
|
|
|
AllIntersectionsVisitor(const EdgeGrid::Grid &grid,
|
|
std::vector<Intersection> &intersections,
|
|
const Matrix2d &transform_to_x_axis,
|
|
const Line &travel_line)
|
|
: grid(grid), intersections(intersections), transform_to_x_axis(transform_to_x_axis), travel_line(travel_line)
|
|
{}
|
|
|
|
void reset() {
|
|
intersection_set.clear();
|
|
}
|
|
|
|
bool operator()(coord_t iy, coord_t ix)
|
|
{
|
|
// Called with a row and colum of the grid cell, which is intersected by a line.
|
|
auto cell_data_range = grid.cell_data_range(iy, ix);
|
|
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second;
|
|
++it_contour_and_segment) {
|
|
// End points of the line segment and their vector.
|
|
auto segment = grid.segment(*it_contour_and_segment);
|
|
|
|
Point intersection_point;
|
|
if (travel_line.intersection(Line(segment.first, segment.second), &intersection_point) &&
|
|
intersection_set.find(*it_contour_and_segment) == intersection_set.end()) {
|
|
intersections.emplace_back(it_contour_and_segment->first, it_contour_and_segment->second,
|
|
(transform_to_x_axis * intersection_point.cast<double>()).cast<coord_t>(), intersection_point);
|
|
intersection_set.insert(*it_contour_and_segment);
|
|
}
|
|
}
|
|
// Continue traversing the grid along the edge.
|
|
return true;
|
|
}
|
|
|
|
const EdgeGrid::Grid &grid;
|
|
std::vector<Intersection> &intersections;
|
|
Matrix2d transform_to_x_axis;
|
|
Line travel_line;
|
|
std::unordered_set<std::pair<size_t, size_t>, boost::hash<std::pair<size_t, size_t>>> intersection_set;
|
|
};
|
|
|
|
// Create a rotation matrix for projection on the given vector
|
|
static Matrix2d rotation_by_direction(const Point &direction)
|
|
{
|
|
Matrix2d rotation;
|
|
rotation.block<1, 2>(0, 0) = direction.cast<double>() / direction.cast<double>().norm();
|
|
rotation(1, 0) = -rotation(0, 1);
|
|
rotation(1, 1) = rotation(0, 0);
|
|
|
|
return rotation;
|
|
}
|
|
|
|
static Point find_first_different_vertex(const Polygon &polygon, const size_t point_idx, const Point &point, bool forward)
|
|
{
|
|
assert(point_idx < polygon.size());
|
|
if (point != polygon.points[point_idx])
|
|
return polygon.points[point_idx];
|
|
|
|
int line_idx = int(point_idx);
|
|
if (forward)
|
|
for (; point == polygon.points[line_idx]; line_idx = (((line_idx + 1) < int(polygon.points.size())) ? (line_idx + 1) : 0));
|
|
else
|
|
for (; point == polygon.points[line_idx]; line_idx = (((line_idx - 1) >= 0) ? (line_idx - 1) : (int(polygon.points.size()) - 1)));
|
|
return polygon.points[line_idx];
|
|
}
|
|
|
|
static Vec2d three_points_inward_normal(const Point &left, const Point &middle, const Point &right)
|
|
{
|
|
assert(left != middle);
|
|
assert(middle != right);
|
|
|
|
Vec2d normal_1(-1 * (middle.y() - left.y()), middle.x() - left.x());
|
|
Vec2d normal_2(-1 * (right.y() - middle.y()), right.x() - middle.x());
|
|
normal_1.normalize();
|
|
normal_2.normalize();
|
|
|
|
return (normal_1 + normal_2).normalized();
|
|
}
|
|
|
|
// Compute normal of the polygon's vertex in an inward direction
|
|
static Vec2d get_polygon_vertex_inward_normal(const Polygon &polygon, const size_t point_idx)
|
|
{
|
|
const size_t left_idx = (point_idx <= 0) ? (polygon.size() - 1) : (point_idx - 1);
|
|
const size_t right_idx = (point_idx >= (polygon.size() - 1)) ? 0 : (point_idx + 1);
|
|
const Point &middle = polygon.points[point_idx];
|
|
const Point &left = find_first_different_vertex(polygon, left_idx, middle, false);
|
|
const Point &right = find_first_different_vertex(polygon, right_idx, middle, true);
|
|
return three_points_inward_normal(left, middle, right);
|
|
}
|
|
|
|
// Compute offset of point_idx of the polygon in a direction of inward normal
|
|
static Point get_polygon_vertex_offset(const Polygon &polygon, const size_t point_idx, const int offset)
|
|
{
|
|
return polygon.points[point_idx] + (get_polygon_vertex_inward_normal(polygon, point_idx) * double(offset)).cast<coord_t>();
|
|
}
|
|
|
|
// Compute offset (in the direction of inward normal) of the point(passed on "middle") based on the nearest points laying on the polygon (left_idx and right_idx).
|
|
static Point get_middle_point_offset(const Polygon &polygon, const size_t left_idx, const size_t right_idx, const Point &middle, const coord_t offset)
|
|
{
|
|
const Point &left = find_first_different_vertex(polygon, left_idx, middle, false);
|
|
const Point &right = find_first_different_vertex(polygon, right_idx, middle, true);
|
|
return middle + (three_points_inward_normal(left, middle, right) * double(offset)).cast<coord_t>();
|
|
}
|
|
|
|
static bool check_if_could_cross_perimeters(const BoundingBox &bbox, const Point &start, const Point &end)
|
|
{
|
|
bool start_out_of_bound = !bbox.contains(start), end_out_of_bound = !bbox.contains(end);
|
|
// When both endpoints are out of the bounding box, it needs to check in more detail.
|
|
if (start_out_of_bound && end_out_of_bound) {
|
|
Point intersection;
|
|
return bbox.polygon().intersection(Line(start, end), &intersection);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static std::pair<Point, Point> clamp_endpoints_by_bounding_box(const BoundingBox &bbox, const Point &start, const Point &end)
|
|
{
|
|
bool start_out_of_bound = !bbox.contains(start), end_out_of_bound = !bbox.contains(end);
|
|
Point start_clamped = start, end_clamped = end;
|
|
Points intersections;
|
|
if (start_out_of_bound || end_out_of_bound) {
|
|
bbox.polygon().intersections(Line(start, end), &intersections);
|
|
assert(intersections.size() <= 2);
|
|
}
|
|
|
|
if (start_out_of_bound && !end_out_of_bound && intersections.size() == 1) {
|
|
start_clamped = intersections[0];
|
|
} else if (!start_out_of_bound && end_out_of_bound && intersections.size() == 1) {
|
|
end_clamped = intersections[0];
|
|
} else if (start_out_of_bound && end_out_of_bound && intersections.size() == 2) {
|
|
if ((intersections[0] - start).cast<double>().norm() < (intersections[1] - start).cast<double>().norm()) {
|
|
start_clamped = intersections[0];
|
|
end_clamped = intersections[1];
|
|
} else {
|
|
start_clamped = intersections[1];
|
|
end_clamped = intersections[0];
|
|
}
|
|
}
|
|
|
|
return std::make_pair(start_clamped, end_clamped);
|
|
}
|
|
|
|
static inline float get_default_perimeter_spacing(const Print &print)
|
|
{
|
|
const std::vector<double> &nozzle_diameters = print.config().nozzle_diameter.values;
|
|
return float(scale_(*std::max_element(nozzle_diameters.begin(), nozzle_diameters.end())));
|
|
}
|
|
|
|
static float get_perimeter_spacing(const Layer &layer)
|
|
{
|
|
size_t regions_count = 0;
|
|
float perimeter_spacing = 0.f;
|
|
for (const LayerRegion *layer_region : layer.regions()) {
|
|
perimeter_spacing += layer_region->flow(frPerimeter).scaled_spacing();
|
|
++regions_count;
|
|
}
|
|
|
|
assert(perimeter_spacing >= 0.f);
|
|
if (regions_count != 0)
|
|
perimeter_spacing /= float(regions_count);
|
|
else
|
|
perimeter_spacing = get_default_perimeter_spacing(*layer.object()->print());
|
|
return perimeter_spacing;
|
|
}
|
|
|
|
static float get_perimeter_spacing_external(const Layer &layer)
|
|
{
|
|
size_t regions_count = 0;
|
|
float perimeter_spacing = 0.f;
|
|
for (const PrintObject *object : layer.object()->print()->objects())
|
|
for (Layer *l : object->layers())
|
|
if ((layer.print_z - EPSILON) <= l->print_z && l->print_z <= (layer.print_z + EPSILON))
|
|
for (const LayerRegion *layer_region : l->regions()) {
|
|
perimeter_spacing += layer_region->flow(frPerimeter).scaled_spacing();
|
|
++regions_count;
|
|
}
|
|
|
|
assert(perimeter_spacing >= 0.f);
|
|
if (regions_count != 0)
|
|
perimeter_spacing /= float(regions_count);
|
|
else
|
|
perimeter_spacing = get_default_perimeter_spacing(*layer.object()->print());
|
|
return perimeter_spacing;
|
|
}
|
|
|
|
// Check if anyone of ExPolygons contains whole travel.
|
|
template<class T> static bool any_expolygon_contains(const ExPolygons &ex_polygons, const T &travel)
|
|
{
|
|
for (const ExPolygon &ex_polygon : ex_polygons)
|
|
if (ex_polygon.contains(travel)) return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static std::pair<Polygons, Polygons> split_expolygon(const ExPolygons &ex_polygons)
|
|
{
|
|
Polygons contours, holes;
|
|
contours.reserve(ex_polygons.size());
|
|
holes.reserve(std::accumulate(ex_polygons.begin(), ex_polygons.end(), size_t(0),
|
|
[](size_t sum, const ExPolygon &ex_poly) { return sum + ex_poly.holes.size(); }));
|
|
for (const ExPolygon &ex_poly : ex_polygons) {
|
|
contours.emplace_back(ex_poly.contour);
|
|
append(holes, ex_poly.holes);
|
|
}
|
|
return std::make_pair(std::move(contours), std::move(holes));
|
|
}
|
|
|
|
static Polyline to_polyline(const std::vector<TravelPoint> &travel)
|
|
{
|
|
Polyline result;
|
|
result.points.reserve(travel.size());
|
|
for (const TravelPoint &t_point : travel)
|
|
result.append(t_point.point);
|
|
return result;
|
|
}
|
|
|
|
static double travel_length(const std::vector<TravelPoint> &travel) {
|
|
double total_length = 0;
|
|
for (size_t idx = 1; idx < travel.size(); ++idx)
|
|
total_length += (travel[idx].point - travel[idx - 1].point).cast<double>().norm();
|
|
|
|
return total_length;
|
|
}
|
|
|
|
#ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT
|
|
static void export_travel_to_svg(const Polygons &boundary,
|
|
const Line &original_travel,
|
|
const Polyline &result_travel,
|
|
const std::vector<Intersection> &intersections,
|
|
const std::string &path)
|
|
{
|
|
BoundingBox bbox = get_extents(boundary);
|
|
::Slic3r::SVG svg(path, bbox);
|
|
svg.draw_outline(boundary, "green");
|
|
svg.draw(original_travel, "blue");
|
|
svg.draw(result_travel, "red");
|
|
svg.draw(original_travel.a, "black");
|
|
svg.draw(original_travel.b, "grey");
|
|
|
|
for (const Intersection &intersection : intersections)
|
|
svg.draw(intersection.point, "lightseagreen");
|
|
}
|
|
|
|
static void export_travel_to_svg(const Polygons &boundary,
|
|
const Line &original_travel,
|
|
const std::vector<TravelPoint> &result_travel,
|
|
const std::vector<Intersection> &intersections,
|
|
const std::string &path)
|
|
{
|
|
export_travel_to_svg(boundary, original_travel, to_polyline(result_travel), intersections, path);
|
|
}
|
|
#endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */
|
|
|
|
static ExPolygons get_boundary(const Layer &layer)
|
|
{
|
|
const float perimeter_spacing = get_perimeter_spacing(layer);
|
|
const float perimeter_offset = perimeter_spacing / 2.f;
|
|
size_t polygons_count = 0;
|
|
for (const LayerRegion *layer_region : layer.regions())
|
|
polygons_count += layer_region->slices.surfaces.size();
|
|
|
|
ExPolygons boundary;
|
|
boundary.reserve(polygons_count);
|
|
for (const LayerRegion *layer_region : layer.regions())
|
|
for (const Surface &surface : layer_region->slices.surfaces) boundary.emplace_back(surface.expolygon);
|
|
|
|
boundary = union_ex(boundary);
|
|
ExPolygons perimeter_boundary = offset_ex(boundary, -perimeter_offset);
|
|
ExPolygons result_boundary;
|
|
if (perimeter_boundary.size() != boundary.size()) {
|
|
// If any part of the polygon is missing after shrinking, then for misisng parts are is used the boundary of the slice.
|
|
ExPolygons missing_perimeter_boundary = offset_ex(diff_ex(boundary,
|
|
offset_ex(perimeter_boundary, perimeter_offset + float(SCALED_EPSILON) / 2.f)),
|
|
perimeter_offset + float(SCALED_EPSILON));
|
|
perimeter_boundary = offset_ex(perimeter_boundary, perimeter_offset);
|
|
perimeter_boundary.reserve(perimeter_boundary.size() + missing_perimeter_boundary.size());
|
|
perimeter_boundary.insert(perimeter_boundary.end(), missing_perimeter_boundary.begin(), missing_perimeter_boundary.end());
|
|
// By calling intersection_ex some artifacts arose by previous operations are removed.
|
|
result_boundary = union_ex(intersection_ex(offset_ex(perimeter_boundary, -perimeter_offset), boundary));
|
|
} else {
|
|
result_boundary = std::move(perimeter_boundary);
|
|
}
|
|
|
|
auto [contours, holes] = split_expolygon(boundary);
|
|
// Add an outer boundary to avoid crossing perimeters from supports
|
|
ExPolygons outer_boundary = union_ex(
|
|
diff(static_cast<Polygons>(Geometry::convex_hull(offset(contours, 2.f * perimeter_spacing))),
|
|
offset(contours, perimeter_spacing + perimeter_offset)));
|
|
result_boundary.insert(result_boundary.end(), outer_boundary.begin(), outer_boundary.end());
|
|
ExPolygons holes_boundary = offset_ex(holes, -perimeter_spacing);
|
|
result_boundary.insert(result_boundary.end(), holes_boundary.begin(), holes_boundary.end());
|
|
result_boundary = union_ex(result_boundary);
|
|
|
|
// Collect all top layers that will not be crossed.
|
|
polygons_count = 0;
|
|
for (const LayerRegion *layer_region : layer.regions())
|
|
for (const Surface &surface : layer_region->fill_surfaces.surfaces)
|
|
if (surface.is_top()) ++polygons_count;
|
|
|
|
if (polygons_count > 0) {
|
|
ExPolygons top_layer_polygons;
|
|
top_layer_polygons.reserve(polygons_count);
|
|
for (const LayerRegion *layer_region : layer.regions())
|
|
for (const Surface &surface : layer_region->fill_surfaces.surfaces)
|
|
if (surface.is_top()) top_layer_polygons.emplace_back(surface.expolygon);
|
|
|
|
top_layer_polygons = union_ex(top_layer_polygons);
|
|
return diff_ex(result_boundary, offset_ex(top_layer_polygons, -perimeter_offset));
|
|
}
|
|
|
|
return result_boundary;
|
|
}
|
|
|
|
static ExPolygons get_boundary_external(const Layer &layer)
|
|
{
|
|
const float perimeter_spacing = get_perimeter_spacing_external(layer);
|
|
const float perimeter_offset = perimeter_spacing / 2.f;
|
|
ExPolygons boundary;
|
|
// Collect all polygons for all printed objects and their instances, which will be printed at the same time as passed "layer".
|
|
for (const PrintObject *object : layer.object()->print()->objects()) {
|
|
ExPolygons polygons_per_obj;
|
|
for (Layer *l : object->layers())
|
|
if ((layer.print_z - EPSILON) <= l->print_z && l->print_z <= (layer.print_z + EPSILON))
|
|
for (const LayerRegion *layer_region : l->regions())
|
|
for (const Surface &surface : layer_region->slices.surfaces)
|
|
polygons_per_obj.emplace_back(surface.expolygon);
|
|
|
|
for (const PrintInstance &instance : object->instances()) {
|
|
size_t boundary_idx = boundary.size();
|
|
boundary.reserve(boundary.size() + polygons_per_obj.size());
|
|
boundary.insert(boundary.end(), polygons_per_obj.begin(), polygons_per_obj.end());
|
|
for (; boundary_idx < boundary.size(); ++boundary_idx) boundary[boundary_idx].translate(instance.shift.x(), instance.shift.y());
|
|
}
|
|
}
|
|
boundary = union_ex(boundary);
|
|
auto [contours, holes] = split_expolygon(boundary);
|
|
// Polygons in which is possible traveling without crossing perimeters of another object.
|
|
// A convex hull allows removing unnecessary detour caused by following the boundary of the object.
|
|
ExPolygons result_boundary = union_ex(
|
|
diff(static_cast<Polygons>(Geometry::convex_hull(offset(contours, 2.f * perimeter_spacing))),
|
|
offset(contours, perimeter_spacing + perimeter_offset)));
|
|
// All holes are extended for forcing travel around the outer perimeter of a hole when a hole is crossed.
|
|
ExPolygons holes_boundary = union_ex(diff(offset(holes, perimeter_spacing), offset(holes, perimeter_offset)));
|
|
result_boundary.reserve(result_boundary.size() + holes_boundary.size());
|
|
result_boundary.insert(result_boundary.end(), holes_boundary.begin(), holes_boundary.end());
|
|
result_boundary = union_ex(result_boundary);
|
|
return result_boundary;
|
|
}
|
|
|
|
// Returns a direction of the shortest path along the polygon boundary
|
|
enum class Direction { Forward, Backward };
|
|
static Direction get_shortest_direction(const Lines &lines,
|
|
const size_t start_idx,
|
|
const size_t end_idx,
|
|
const Point &intersection_first,
|
|
const Point &intersection_last)
|
|
{
|
|
double total_length_forward = (lines[start_idx].b - intersection_first).cast<double>().norm();
|
|
double total_length_backward = (lines[start_idx].a - intersection_first).cast<double>().norm();
|
|
|
|
auto cyclic_index = [&lines](int index) {
|
|
if (index >= int(lines.size()))
|
|
index = 0;
|
|
else if (index < 0)
|
|
index = int(lines.size()) - 1;
|
|
|
|
return index;
|
|
};
|
|
|
|
for (int line_idx = cyclic_index(int(start_idx) + 1); line_idx != int(end_idx); line_idx = cyclic_index(line_idx + 1))
|
|
total_length_forward += lines[line_idx].length();
|
|
|
|
for (int line_idx = cyclic_index(int(start_idx) - 1); line_idx != int(end_idx); line_idx = cyclic_index(line_idx - 1))
|
|
total_length_backward += lines[line_idx].length();
|
|
|
|
total_length_forward += (lines[end_idx].a - intersection_last).cast<double>().norm();
|
|
total_length_backward += (lines[end_idx].b - intersection_last).cast<double>().norm();
|
|
|
|
return (total_length_forward < total_length_backward) ? Direction::Forward : Direction::Backward;
|
|
}
|
|
|
|
static std::vector<TravelPoint> simplify_travel(const EdgeGrid::Grid& edge_grid, const std::vector<TravelPoint>& travel, const Polygons& boundaries, const bool use_heuristics);
|
|
|
|
static size_t avoid_perimeters(const Polygons &boundaries,
|
|
const EdgeGrid::Grid &edge_grid,
|
|
const Point &start,
|
|
const Point &end,
|
|
const bool use_heuristics,
|
|
std::vector<TravelPoint> *result_out)
|
|
{
|
|
const Point direction = end - start;
|
|
Matrix2d transform_to_x_axis = rotation_by_direction(direction);
|
|
|
|
const Line travel_line_orig(start, end);
|
|
const Line travel_line((transform_to_x_axis * start.cast<double>()).cast<coord_t>(),
|
|
(transform_to_x_axis * end.cast<double>()).cast<coord_t>());
|
|
|
|
std::vector<Intersection> intersections;
|
|
{
|
|
AllIntersectionsVisitor visitor(edge_grid, intersections, transform_to_x_axis, travel_line_orig);
|
|
edge_grid.visit_cells_intersecting_line(start, end, visitor);
|
|
}
|
|
|
|
std::sort(intersections.begin(), intersections.end());
|
|
|
|
std::vector<TravelPoint> result;
|
|
result.push_back({start, -1});
|
|
for (auto it_first = intersections.begin(); it_first != intersections.end(); ++it_first) {
|
|
// The entry point to the boundary polygon
|
|
const Intersection &intersection_first = *it_first;
|
|
// Skip the it_first from the search for the farthest exit point from the boundary polygon
|
|
auto it_last_item = std::make_reverse_iterator(it_first) - 1;
|
|
// Search for the farthest intersection different from it_first but with the same border_idx
|
|
auto it_second_r = std::find_if(intersections.rbegin(), it_last_item, [&intersection_first](const Intersection &intersection) {
|
|
return intersection_first.border_idx == intersection.border_idx;
|
|
});
|
|
|
|
// Append the first intersection into the path
|
|
size_t left_idx = intersection_first.line_idx;
|
|
size_t right_idx = (intersection_first.line_idx >= (boundaries[intersection_first.border_idx].points.size() - 1)) ? 0 : (intersection_first.line_idx + 1);
|
|
// Offset of the polygon's point using get_middle_point_offset is used to simplify the calculation of intersection between the
|
|
// boundary and the travel. The appended point is translated in the direction of inward normal. This translation ensures that the
|
|
// appended point will be inside the polygon and not on the polygon border.
|
|
result.push_back({get_middle_point_offset(boundaries[intersection_first.border_idx], left_idx, right_idx, intersection_first.point, coord_t(SCALED_EPSILON)), int(intersection_first.border_idx)});
|
|
|
|
// Check if intersection line also exit the boundary polygon
|
|
if (it_second_r != it_last_item) {
|
|
// Transform reverse iterator to forward
|
|
auto it_second = (it_second_r.base() - 1);
|
|
// The exit point from the boundary polygon
|
|
const Intersection &intersection_second = *it_second;
|
|
Lines border_lines = boundaries[intersection_first.border_idx].lines();
|
|
|
|
Direction shortest_direction = get_shortest_direction(border_lines, intersection_first.line_idx, intersection_second.line_idx, intersection_first.point, intersection_second.point);
|
|
// Append the path around the border into the path
|
|
if (shortest_direction == Direction::Forward)
|
|
for (int line_idx = int(intersection_first.line_idx); line_idx != int(intersection_second.line_idx);
|
|
line_idx = (((line_idx + 1) < int(border_lines.size())) ? (line_idx + 1) : 0))
|
|
result.push_back({get_polygon_vertex_offset(boundaries[intersection_first.border_idx],
|
|
(line_idx + 1 == int(boundaries[intersection_first.border_idx].points.size())) ? 0 : (line_idx + 1), coord_t(SCALED_EPSILON)), int(intersection_first.border_idx)});
|
|
else
|
|
for (int line_idx = int(intersection_first.line_idx); line_idx != int(intersection_second.line_idx);
|
|
line_idx = (((line_idx - 1) >= 0) ? (line_idx - 1) : (int(border_lines.size()) - 1)))
|
|
result.push_back({get_polygon_vertex_offset(boundaries[intersection_second.border_idx], line_idx + 0, coord_t(SCALED_EPSILON)), int(intersection_first.border_idx)});
|
|
|
|
// Append the farthest intersection into the path
|
|
left_idx = intersection_second.line_idx;
|
|
right_idx = (intersection_second.line_idx >= (boundaries[intersection_second.border_idx].points.size() - 1)) ? 0 : (intersection_second.line_idx + 1);
|
|
result.push_back({get_middle_point_offset(boundaries[intersection_second.border_idx], left_idx, right_idx, intersection_second.point, coord_t(SCALED_EPSILON)), int(intersection_second.border_idx)});
|
|
// Skip intersections in between
|
|
it_first = it_second;
|
|
}
|
|
}
|
|
|
|
result.push_back({end, -1});
|
|
|
|
#ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT
|
|
{
|
|
static int iRun = 0;
|
|
export_travel_to_svg(boundaries, travel_line_orig, result, intersections,
|
|
debug_out_path("AvoidCrossingPerimeters-initial-%d.svg", iRun++));
|
|
}
|
|
#endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */
|
|
|
|
if(!intersections.empty())
|
|
result = simplify_travel(edge_grid, result, boundaries, use_heuristics);
|
|
|
|
#ifdef AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT
|
|
{
|
|
static int iRun = 0;
|
|
export_travel_to_svg(boundaries, travel_line_orig, result, intersections,
|
|
debug_out_path("AvoidCrossingPerimeters-final-%d.svg", iRun++));
|
|
}
|
|
#endif /* AVOID_CROSSING_PERIMETERS_DEBUG_OUTPUT */
|
|
|
|
result_out->reserve(result_out->size() + result.size());
|
|
result_out->insert(result_out->end(), result.begin(), result.end());
|
|
return intersections.size();
|
|
}
|
|
|
|
static std::vector<TravelPoint> simplify_travel_heuristics(const EdgeGrid::Grid &edge_grid,
|
|
const std::vector<TravelPoint> &travel,
|
|
const Polygons &boundaries)
|
|
{
|
|
std::vector<TravelPoint> simplified_path;
|
|
std::vector<Intersection> intersections;
|
|
AllIntersectionsVisitor visitor(edge_grid, intersections);
|
|
simplified_path.reserve(travel.size());
|
|
simplified_path.emplace_back(travel.front());
|
|
for (size_t point_idx = 1; point_idx < travel.size(); ++point_idx) {
|
|
// Skip all indexes on the same polygon
|
|
while (point_idx < travel.size() && travel[point_idx - 1].border_idx == travel[point_idx].border_idx) {
|
|
simplified_path.emplace_back(travel[point_idx]);
|
|
point_idx++;
|
|
}
|
|
|
|
if (point_idx < travel.size()) {
|
|
const TravelPoint ¤t = travel[point_idx - 1];
|
|
const TravelPoint &next = travel[point_idx];
|
|
TravelPoint new_next = next;
|
|
size_t new_point_idx = point_idx;
|
|
double path_length = (next.point - current.point).cast<double>().norm();
|
|
double new_path_shorter_by = 0.;
|
|
size_t border_idx_change_count = 0;
|
|
std::vector<TravelPoint> shortcut;
|
|
for (size_t point_idx_2 = point_idx + 1; point_idx_2 < travel.size(); ++point_idx_2) {
|
|
const TravelPoint &possible_new_next = travel[point_idx_2];
|
|
if (travel[point_idx_2 - 1].border_idx != travel[point_idx_2].border_idx)
|
|
border_idx_change_count++;
|
|
|
|
if (border_idx_change_count >= 2)
|
|
break;
|
|
|
|
path_length += (possible_new_next.point - travel[point_idx_2 - 1].point).cast<double>().norm();
|
|
double shortcut_length = (possible_new_next.point - current.point).cast<double>().norm();
|
|
if ((path_length - shortcut_length) <= scale_(10.0))
|
|
continue;
|
|
|
|
intersections.clear();
|
|
visitor.reset();
|
|
visitor.travel_line.a = current.point;
|
|
visitor.travel_line.b = possible_new_next.point;
|
|
visitor.transform_to_x_axis = rotation_by_direction(visitor.travel_line.vector());
|
|
edge_grid.visit_cells_intersecting_line(visitor.travel_line.a, visitor.travel_line.b, visitor);
|
|
if (!intersections.empty()) {
|
|
std::sort(intersections.begin(), intersections.end());
|
|
size_t last_border_idx_count = 0;
|
|
for (const Intersection &intersection : intersections)
|
|
if (int(intersection.border_idx) == possible_new_next.border_idx)
|
|
++last_border_idx_count;
|
|
|
|
if (last_border_idx_count > 0)
|
|
continue;
|
|
|
|
std::vector<TravelPoint> possible_shortcut;
|
|
avoid_perimeters(boundaries, edge_grid, current.point, possible_new_next.point, false, &possible_shortcut);
|
|
double shortcut_travel = travel_length(possible_shortcut);
|
|
if (path_length > shortcut_travel && (path_length - shortcut_travel) > new_path_shorter_by) {
|
|
new_path_shorter_by = path_length - shortcut_travel;
|
|
shortcut = possible_shortcut;
|
|
new_next = possible_new_next;
|
|
new_point_idx = point_idx_2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!shortcut.empty()) {
|
|
assert(shortcut.size() >= 2);
|
|
simplified_path.insert(simplified_path.end(), shortcut.begin() + 1, shortcut.end() - 1);
|
|
point_idx = new_point_idx;
|
|
}
|
|
|
|
simplified_path.emplace_back(new_next);
|
|
}
|
|
}
|
|
|
|
return simplified_path;
|
|
}
|
|
|
|
static std::vector<TravelPoint> simplify_travel(const EdgeGrid::Grid &edge_grid,
|
|
const std::vector<TravelPoint> &travel,
|
|
const Polygons &boundaries,
|
|
const bool use_heuristics)
|
|
{
|
|
struct Visitor
|
|
{
|
|
Visitor(const EdgeGrid::Grid &grid) : grid(grid) {}
|
|
|
|
bool operator()(coord_t iy, coord_t ix)
|
|
{
|
|
assert(pt_current != nullptr);
|
|
assert(pt_next != nullptr);
|
|
// Called with a row and colum of the grid cell, which is intersected by a line.
|
|
auto cell_data_range = grid.cell_data_range(iy, ix);
|
|
this->intersect = false;
|
|
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) {
|
|
// End points of the line segment and their vector.
|
|
auto segment = grid.segment(*it_contour_and_segment);
|
|
if (Geometry::segments_intersect(segment.first, segment.second, *pt_current, *pt_next)) {
|
|
this->intersect = true;
|
|
return false;
|
|
}
|
|
}
|
|
// Continue traversing the grid along the edge.
|
|
return true;
|
|
}
|
|
|
|
const EdgeGrid::Grid &grid;
|
|
const Slic3r::Point *pt_current = nullptr;
|
|
const Slic3r::Point *pt_next = nullptr;
|
|
bool intersect = false;
|
|
} visitor(edge_grid);
|
|
|
|
std::vector<TravelPoint> simplified_path;
|
|
simplified_path.reserve(travel.size());
|
|
simplified_path.emplace_back(travel.front());
|
|
|
|
// Try to skip some points in the path.
|
|
for (size_t point_idx = 1; point_idx < travel.size(); ++point_idx) {
|
|
const Point ¤t_point = travel[point_idx - 1].point;
|
|
TravelPoint next = travel[point_idx];
|
|
|
|
visitor.pt_current = ¤t_point;
|
|
|
|
for (size_t point_idx_2 = point_idx + 1; point_idx_2 < travel.size(); ++point_idx_2) {
|
|
if (travel[point_idx_2].point == current_point) {
|
|
next = travel[point_idx_2];
|
|
point_idx = point_idx_2;
|
|
continue;
|
|
}
|
|
|
|
visitor.pt_next = &travel[point_idx_2].point;
|
|
edge_grid.visit_cells_intersecting_line(*visitor.pt_current, *visitor.pt_next, visitor);
|
|
// Check if deleting point causes crossing a boundary
|
|
if (!visitor.intersect) {
|
|
next = travel[point_idx_2];
|
|
point_idx = point_idx_2;
|
|
}
|
|
}
|
|
|
|
simplified_path.emplace_back(next);
|
|
}
|
|
|
|
if(use_heuristics) {
|
|
simplified_path = simplify_travel_heuristics(edge_grid, simplified_path, boundaries);
|
|
std::reverse(simplified_path.begin(),simplified_path.end());
|
|
simplified_path = simplify_travel_heuristics(edge_grid, simplified_path, boundaries);
|
|
std::reverse(simplified_path.begin(),simplified_path.end());
|
|
}
|
|
|
|
return simplified_path;
|
|
}
|
|
|
|
static bool need_wipe(const GCode &gcodegen,
|
|
const ExPolygons &slice,
|
|
const Line &original_travel,
|
|
const Polyline &result_travel,
|
|
const size_t intersection_count)
|
|
{
|
|
bool z_lift_enabled = gcodegen.config().retract_lift.get_at(gcodegen.writer().extruder()->id()) > 0.;
|
|
bool wipe_needed = false;
|
|
|
|
// If the original unmodified path doesn't have any intersection with boundary, then it is entirely inside the object otherwise is entirely
|
|
// outside the object.
|
|
if (intersection_count > 0) {
|
|
// The original layer is intersected with defined boundaries. Then it is necessary to make a detailed test.
|
|
// If the z-lift is enabled, then a wipe is needed when the original travel leads above the holes.
|
|
if (z_lift_enabled) {
|
|
if (any_expolygon_contains(slice, original_travel)) {
|
|
// Check if original_travel and result_travel are not same.
|
|
// If both are the same, then it is possible to skip testing of result_travel
|
|
if (result_travel.size() == 2 && result_travel.first_point() == original_travel.a && result_travel.last_point() == original_travel.b) {
|
|
wipe_needed = false;
|
|
} else {
|
|
wipe_needed = !any_expolygon_contains(slice, result_travel);
|
|
}
|
|
} else {
|
|
wipe_needed = true;
|
|
}
|
|
} else {
|
|
wipe_needed = !any_expolygon_contains(slice, result_travel);
|
|
}
|
|
}
|
|
|
|
return wipe_needed;
|
|
}
|
|
|
|
// Plan travel, which avoids perimeter crossings by following the boundaries of the layer.
|
|
Polyline AvoidCrossingPerimeters::travel_to(const GCode &gcodegen, const Point &point, bool *could_be_wipe_disabled)
|
|
{
|
|
// If use_external, then perform the path planning in the world coordinate system (correcting for the gcodegen offset).
|
|
// Otherwise perform the path planning in the coordinate system of the active object.
|
|
bool use_external = m_use_external_mp || m_use_external_mp_once;
|
|
Point scaled_origin = use_external ? Point::new_scale(gcodegen.origin()(0), gcodegen.origin()(1)) : Point(0, 0);
|
|
Point start = gcodegen.last_pos() + scaled_origin;
|
|
Point end = point + scaled_origin;
|
|
Polyline result_pl;
|
|
size_t travel_intersection_count = 0;
|
|
if (!check_if_could_cross_perimeters(use_external ? m_bbox_external : m_bbox, start, end)) {
|
|
result_pl = Polyline({start, end});
|
|
travel_intersection_count = 0;
|
|
} else {
|
|
std::vector<TravelPoint> result;
|
|
auto [start_clamped, end_clamped] = clamp_endpoints_by_bounding_box(use_external ? m_bbox_external : m_bbox, start, end);
|
|
if (use_external)
|
|
travel_intersection_count = avoid_perimeters(m_boundaries_external, m_grid_external, start_clamped, end_clamped, true, &result);
|
|
else
|
|
travel_intersection_count = avoid_perimeters(m_boundaries, m_grid, start_clamped, end_clamped, true, &result);
|
|
|
|
result_pl = to_polyline(result);
|
|
}
|
|
|
|
result_pl.points.front() = start;
|
|
result_pl.points.back() = end;
|
|
|
|
Line travel(start, end);
|
|
double max_detour_length scale_(gcodegen.config().avoid_crossing_perimeters_max_detour);
|
|
if ((max_detour_length > 0) && ((result_pl.length() - travel.length()) > max_detour_length)) {
|
|
result_pl = Polyline({start, end});
|
|
}
|
|
if (use_external) {
|
|
result_pl.translate(-scaled_origin);
|
|
*could_be_wipe_disabled = false;
|
|
} else
|
|
*could_be_wipe_disabled = !need_wipe(gcodegen, m_slice, travel, result_pl, travel_intersection_count);
|
|
|
|
return result_pl;
|
|
}
|
|
|
|
void AvoidCrossingPerimeters::init_layer(const Layer &layer)
|
|
{
|
|
m_slice.clear();
|
|
m_boundaries.clear();
|
|
m_boundaries_external.clear();
|
|
|
|
for (const LayerRegion *layer_region : layer.regions())
|
|
append(m_slice, (ExPolygons) layer_region->slices);
|
|
|
|
m_boundaries = to_polygons(get_boundary(layer));
|
|
m_boundaries_external = to_polygons(get_boundary_external(layer));
|
|
|
|
m_bbox = get_extents(m_boundaries);
|
|
m_bbox.offset(SCALED_EPSILON);
|
|
m_bbox_external = get_extents(m_boundaries_external);
|
|
m_bbox_external.offset(SCALED_EPSILON);
|
|
|
|
m_grid.set_bbox(m_bbox);
|
|
m_grid.create(m_boundaries, coord_t(scale_(1.)));
|
|
m_grid_external.set_bbox(m_bbox_external);
|
|
m_grid_external.create(m_boundaries_external, coord_t(scale_(1.)));
|
|
}
|
|
|
|
} // namespace Slic3r
|