mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-16 14:49:39 +08:00
* merge
* remove a ctor in QuaternionBase as it gives a strange error with GCC 4.4.2.
This commit is contained in:
commit
92749eed11
@ -8,6 +8,7 @@
|
||||
#include "Cholesky"
|
||||
#include "Jacobi"
|
||||
#include "Householder"
|
||||
#include "LU"
|
||||
|
||||
// Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module
|
||||
#if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS>=2)
|
||||
|
@ -122,6 +122,7 @@ class PartialReduxExpr : ei_no_assignment_operator,
|
||||
EIGEN_MEMBER_FUNCTOR(squaredNorm, Size * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(mean, (Size-1)*NumTraits<Scalar>::AddCost + NumTraits<Scalar>::MulCost);
|
||||
EIGEN_MEMBER_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
@ -297,6 +298,13 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
const typename ReturnType<ei_member_sum>::Type sum() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the mean
|
||||
* of each column (or row) of the referenced expression.
|
||||
*
|
||||
* \sa MatrixBase::mean() */
|
||||
const typename ReturnType<ei_member_mean>::Type mean() const
|
||||
{ return _expression(); }
|
||||
|
||||
/** \returns a row (or column) vector expression representing
|
||||
* whether \b all coefficients of each respective column (or row) are \c true.
|
||||
*
|
||||
|
@ -93,7 +93,7 @@ public:
|
||||
? ( int(MayUnrollCompletely) && int(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) )
|
||||
: int(NoUnrolling)
|
||||
};
|
||||
|
||||
|
||||
static void debug()
|
||||
{
|
||||
EIGEN_DEBUG_VAR(DstIsAligned)
|
||||
|
@ -350,7 +350,7 @@ struct ei_scalar_multiple_op {
|
||||
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
|
||||
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
|
||||
{ return ei_pmul(a, ei_pset1(m_other)); }
|
||||
const Scalar m_other;
|
||||
typename ei_makeconst<typename NumTraits<Scalar>::Nested>::type m_other;
|
||||
private:
|
||||
ei_scalar_multiple_op& operator=(const ei_scalar_multiple_op&);
|
||||
};
|
||||
@ -364,7 +364,7 @@ struct ei_scalar_multiple2_op {
|
||||
EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const ei_scalar_multiple2_op& other) : m_other(other.m_other) { }
|
||||
EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
|
||||
EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
|
||||
const Scalar2 m_other;
|
||||
typename ei_makeconst<typename NumTraits<Scalar2>::Nested>::type m_other;
|
||||
};
|
||||
template<typename Scalar1,typename Scalar2>
|
||||
struct ei_functor_traits<ei_scalar_multiple2_op<Scalar1,Scalar2> >
|
||||
@ -393,7 +393,7 @@ struct ei_scalar_quotient1_impl<Scalar,false> {
|
||||
EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { }
|
||||
EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {}
|
||||
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
|
||||
const Scalar m_other;
|
||||
typename ei_makeconst<typename NumTraits<Scalar>::Nested>::type m_other;
|
||||
};
|
||||
template<typename Scalar>
|
||||
struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,false> >
|
||||
|
@ -145,12 +145,6 @@ template<typename Derived> class MatrixBase
|
||||
#endif
|
||||
};
|
||||
|
||||
/** Default constructor. Just checks at compile-time for self-consistency of the flags. */
|
||||
MatrixBase()
|
||||
{
|
||||
ei_assert(ei_are_flags_consistent<Flags>::ret);
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
|
||||
* (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
|
||||
@ -177,7 +171,7 @@ template<typename Derived> class MatrixBase
|
||||
inline int diagonalSize() const { return std::min(rows(),cols()); }
|
||||
/** \returns the number of nonzero coefficients which is in practice the number
|
||||
* of stored coefficients. */
|
||||
inline int nonZeros() const { return derived().nonZeros(); }
|
||||
inline int nonZeros() const { return size(); }
|
||||
/** \returns true if either the number of rows or the number of columns is equal to 1.
|
||||
* In other words, this function returns
|
||||
* \code rows()==1 || cols()==1 \endcode
|
||||
@ -645,8 +639,9 @@ template<typename Derived> class MatrixBase
|
||||
const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
|
||||
binaryExpr(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const;
|
||||
|
||||
|
||||
|
||||
Scalar sum() const;
|
||||
Scalar mean() const;
|
||||
Scalar trace() const;
|
||||
|
||||
Scalar prod() const;
|
||||
@ -811,6 +806,24 @@ template<typename Derived> class MatrixBase
|
||||
#ifdef EIGEN_MATRIXBASE_PLUGIN
|
||||
#include EIGEN_MATRIXBASE_PLUGIN
|
||||
#endif
|
||||
|
||||
protected:
|
||||
/** Default constructor. Do nothing. */
|
||||
MatrixBase()
|
||||
{
|
||||
/* Just checks for self-consistency of the flags.
|
||||
* Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
|
||||
*/
|
||||
#ifdef EIGEN_INTERNAL_DEBUGGING
|
||||
EIGEN_STATIC_ASSERT(ei_are_flags_consistent<Flags>::ret,
|
||||
INVALID_MATRIXBASE_TEMPLATE_PARAMETERS)
|
||||
#endif
|
||||
}
|
||||
|
||||
private:
|
||||
explicit MatrixBase(int);
|
||||
MatrixBase(int,int);
|
||||
template<typename OtherDerived> explicit MatrixBase(const MatrixBase<OtherDerived>&);
|
||||
};
|
||||
|
||||
#endif // EIGEN_MATRIXBASE_H
|
||||
|
@ -52,6 +52,7 @@ template<> struct NumTraits<int>
|
||||
{
|
||||
typedef int Real;
|
||||
typedef double FloatingPoint;
|
||||
typedef int Nested;
|
||||
enum {
|
||||
IsComplex = 0,
|
||||
HasFloatingPoint = 0,
|
||||
@ -65,6 +66,7 @@ template<> struct NumTraits<float>
|
||||
{
|
||||
typedef float Real;
|
||||
typedef float FloatingPoint;
|
||||
typedef float Nested;
|
||||
enum {
|
||||
IsComplex = 0,
|
||||
HasFloatingPoint = 1,
|
||||
@ -78,6 +80,7 @@ template<> struct NumTraits<double>
|
||||
{
|
||||
typedef double Real;
|
||||
typedef double FloatingPoint;
|
||||
typedef double Nested;
|
||||
enum {
|
||||
IsComplex = 0,
|
||||
HasFloatingPoint = 1,
|
||||
@ -91,6 +94,7 @@ template<typename _Real> struct NumTraits<std::complex<_Real> >
|
||||
{
|
||||
typedef _Real Real;
|
||||
typedef std::complex<_Real> FloatingPoint;
|
||||
typedef std::complex<_Real> Nested;
|
||||
enum {
|
||||
IsComplex = 1,
|
||||
HasFloatingPoint = NumTraits<Real>::HasFloatingPoint,
|
||||
@ -104,6 +108,7 @@ template<> struct NumTraits<long long int>
|
||||
{
|
||||
typedef long long int Real;
|
||||
typedef long double FloatingPoint;
|
||||
typedef long long int Nested;
|
||||
enum {
|
||||
IsComplex = 0,
|
||||
HasFloatingPoint = 0,
|
||||
@ -117,6 +122,7 @@ template<> struct NumTraits<long double>
|
||||
{
|
||||
typedef long double Real;
|
||||
typedef long double FloatingPoint;
|
||||
typedef long double Nested;
|
||||
enum {
|
||||
IsComplex = 0,
|
||||
HasFloatingPoint = 1,
|
||||
@ -130,6 +136,7 @@ template<> struct NumTraits<bool>
|
||||
{
|
||||
typedef bool Real;
|
||||
typedef float FloatingPoint;
|
||||
typedef bool Nested;
|
||||
enum {
|
||||
IsComplex = 0,
|
||||
HasFloatingPoint = 0,
|
||||
|
@ -342,7 +342,7 @@ MatrixBase<Derived>::maxCoeff() const
|
||||
|
||||
/** \returns the sum of all coefficients of *this
|
||||
*
|
||||
* \sa trace(), prod()
|
||||
* \sa trace(), prod(), mean()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
||||
@ -351,12 +351,23 @@ MatrixBase<Derived>::sum() const
|
||||
return this->redux(Eigen::ei_scalar_sum_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns the mean of all coefficients of *this
|
||||
*
|
||||
* \sa trace(), prod(), sum()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
||||
MatrixBase<Derived>::mean() const
|
||||
{
|
||||
return this->redux(Eigen::ei_scalar_sum_op<Scalar>()) / this->size();
|
||||
}
|
||||
|
||||
/** \returns the product of all coefficients of *this
|
||||
*
|
||||
* Example: \include MatrixBase_prod.cpp
|
||||
* Output: \verbinclude MatrixBase_prod.out
|
||||
*
|
||||
* \sa sum()
|
||||
* \sa sum(), mean(), trace()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
|
||||
|
@ -69,7 +69,6 @@ template<typename MatrixType> class Transpose
|
||||
|
||||
inline int rows() const { return m_matrix.cols(); }
|
||||
inline int cols() const { return m_matrix.rows(); }
|
||||
inline int nonZeros() const { return m_matrix.nonZeros(); }
|
||||
inline int stride() const { return m_matrix.stride(); }
|
||||
inline Scalar* data() { return m_matrix.data(); }
|
||||
inline const Scalar* data() const { return m_matrix.data(); }
|
||||
@ -354,5 +353,5 @@ lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei
|
||||
return lazyAssign(static_cast<const MatrixBase<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedB> > > > >& >(other));
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#endif // EIGEN_TRANSPOSE_H
|
||||
|
@ -220,8 +220,14 @@ template<> EIGEN_STRONG_INLINE void ei_pstoreu<double>(double* to, const Packet2
|
||||
template<> EIGEN_STRONG_INLINE void ei_pstoreu<float>(float* to, const Packet4f& from) { ei_pstoreu((double*)to, _mm_castps_pd(from)); }
|
||||
template<> EIGEN_STRONG_INLINE void ei_pstoreu<int>(int* to, const Packet4i& from) { ei_pstoreu((double*)to, _mm_castsi128_pd(from)); }
|
||||
|
||||
#ifdef _MSC_VER
|
||||
// this fix internal compilation error
|
||||
#if defined(_MSC_VER) && (_MSC_VER <= 1500) && defined(_WIN64)
|
||||
// The temporary variable fixes an internal compilation error.
|
||||
// Direct of the struct members fixed bug #62.
|
||||
template<> EIGEN_STRONG_INLINE float ei_pfirst<Packet4f>(const Packet4f& a) { return a.m128_f32[0]; }
|
||||
template<> EIGEN_STRONG_INLINE double ei_pfirst<Packet2d>(const Packet2d& a) { return a.m128d_f64[0]; }
|
||||
template<> EIGEN_STRONG_INLINE int ei_pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
|
||||
#elif defined(_MSC_VER) && (_MSC_VER <= 1500)
|
||||
// The temporary variable fixes an internal compilation error.
|
||||
template<> EIGEN_STRONG_INLINE float ei_pfirst<Packet4f>(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; }
|
||||
template<> EIGEN_STRONG_INLINE double ei_pfirst<Packet2d>(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; }
|
||||
template<> EIGEN_STRONG_INLINE int ei_pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
|
||||
|
@ -83,7 +83,7 @@ inline void* ei_aligned_malloc(size_t size)
|
||||
ei_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
|
||||
#endif
|
||||
|
||||
void *result;
|
||||
void *result;
|
||||
#if !EIGEN_ALIGN
|
||||
result = malloc(size);
|
||||
#elif EIGEN_MALLOC_ALREADY_ALIGNED
|
||||
@ -97,7 +97,7 @@ inline void* ei_aligned_malloc(size_t size)
|
||||
#else
|
||||
result = ei_handmade_aligned_malloc(size);
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef EIGEN_EXCEPTIONS
|
||||
if(result == 0)
|
||||
throw std::bad_alloc();
|
||||
@ -324,34 +324,34 @@ public:
|
||||
typedef aligned_allocator<U> other;
|
||||
};
|
||||
|
||||
pointer address( reference value ) const
|
||||
pointer address( reference value ) const
|
||||
{
|
||||
return &value;
|
||||
}
|
||||
|
||||
const_pointer address( const_reference value ) const
|
||||
const_pointer address( const_reference value ) const
|
||||
{
|
||||
return &value;
|
||||
}
|
||||
|
||||
aligned_allocator() throw()
|
||||
aligned_allocator() throw()
|
||||
{
|
||||
}
|
||||
|
||||
aligned_allocator( const aligned_allocator& ) throw()
|
||||
aligned_allocator( const aligned_allocator& ) throw()
|
||||
{
|
||||
}
|
||||
|
||||
template<class U>
|
||||
aligned_allocator( const aligned_allocator<U>& ) throw()
|
||||
aligned_allocator( const aligned_allocator<U>& ) throw()
|
||||
{
|
||||
}
|
||||
|
||||
~aligned_allocator() throw()
|
||||
~aligned_allocator() throw()
|
||||
{
|
||||
}
|
||||
|
||||
size_type max_size() const throw()
|
||||
size_type max_size() const throw()
|
||||
{
|
||||
return std::numeric_limits<size_type>::max();
|
||||
}
|
||||
@ -362,24 +362,24 @@ public:
|
||||
return static_cast<pointer>( ei_aligned_malloc( num * sizeof(T) ) );
|
||||
}
|
||||
|
||||
void construct( pointer p, const T& value )
|
||||
void construct( pointer p, const T& value )
|
||||
{
|
||||
::new( p ) T( value );
|
||||
}
|
||||
|
||||
void destroy( pointer p )
|
||||
void destroy( pointer p )
|
||||
{
|
||||
p->~T();
|
||||
}
|
||||
|
||||
void deallocate( pointer p, size_type /*num*/ )
|
||||
void deallocate( pointer p, size_type /*num*/ )
|
||||
{
|
||||
ei_aligned_free( p );
|
||||
}
|
||||
|
||||
|
||||
bool operator!=(const aligned_allocator<T>& other) const
|
||||
{ return false; }
|
||||
|
||||
|
||||
bool operator==(const aligned_allocator<T>& other) const
|
||||
{ return true; }
|
||||
};
|
||||
|
@ -64,6 +64,13 @@ template<typename T> struct ei_cleantype<T&> { typedef typename ei_cleant
|
||||
template<typename T> struct ei_cleantype<const T*> { typedef typename ei_cleantype<T>::type type; };
|
||||
template<typename T> struct ei_cleantype<T*> { typedef typename ei_cleantype<T>::type type; };
|
||||
|
||||
template<typename T> struct ei_makeconst { typedef const T type; };
|
||||
template<typename T> struct ei_makeconst<const T> { typedef const T type; };
|
||||
template<typename T> struct ei_makeconst<T&> { typedef const T& type; };
|
||||
template<typename T> struct ei_makeconst<const T&> { typedef const T& type; };
|
||||
template<typename T> struct ei_makeconst<T*> { typedef const T* type; };
|
||||
template<typename T> struct ei_makeconst<const T*> { typedef const T* type; };
|
||||
|
||||
/** \internal Allows to enable/disable an overload
|
||||
* according to a compile time condition.
|
||||
*/
|
||||
|
@ -76,6 +76,7 @@
|
||||
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES,
|
||||
THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES,
|
||||
INVALID_MATRIX_TEMPLATE_PARAMETERS,
|
||||
INVALID_MATRIXBASE_TEMPLATE_PARAMETERS,
|
||||
BOTH_MATRICES_MUST_HAVE_THE_SAME_STORAGE_ORDER,
|
||||
THIS_METHOD_IS_ONLY_FOR_DIAGONAL_MATRIX,
|
||||
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE,
|
||||
|
@ -1,4 +1,4 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// // This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
|
@ -167,10 +167,11 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
//locate the range in which to iterate
|
||||
while(iu > 0)
|
||||
{
|
||||
d = ei_norm1(m_matT.coeffRef(iu,iu)) + ei_norm1(m_matT.coeffRef(iu-1,iu-1));
|
||||
sd = ei_norm1(m_matT.coeffRef(iu,iu-1));
|
||||
d = ei_norm1(m_matT.coeff(iu,iu)) + ei_norm1(m_matT.coeff(iu-1,iu-1));
|
||||
sd = ei_norm1(m_matT.coeff(iu,iu-1));
|
||||
|
||||
if(sd >= eps * d) break; // FIXME : precision criterion ??
|
||||
if(!ei_isMuchSmallerThan(sd,d,eps))
|
||||
break;
|
||||
|
||||
m_matT.coeffRef(iu,iu-1) = Complex(0);
|
||||
iter = 0;
|
||||
@ -187,13 +188,14 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
|
||||
}
|
||||
|
||||
il = iu-1;
|
||||
while( il > 0 )
|
||||
while(il > 0)
|
||||
{
|
||||
// check if the current 2x2 block on the diagonal is upper triangular
|
||||
d = ei_norm1(m_matT.coeffRef(il,il)) + ei_norm1(m_matT.coeffRef(il-1,il-1));
|
||||
sd = ei_norm1(m_matT.coeffRef(il,il-1));
|
||||
d = ei_norm1(m_matT.coeff(il,il)) + ei_norm1(m_matT.coeff(il-1,il-1));
|
||||
sd = ei_norm1(m_matT.coeff(il,il-1));
|
||||
|
||||
if(sd < eps * d) break; // FIXME : precision criterion ??
|
||||
if(ei_isMuchSmallerThan(sd,d,eps))
|
||||
break;
|
||||
|
||||
--il;
|
||||
}
|
||||
|
@ -26,6 +26,155 @@
|
||||
#ifndef EIGEN_QUATERNION_H
|
||||
#define EIGEN_QUATERNION_H
|
||||
|
||||
/***************************************************************************
|
||||
* Definition of QuaternionBase<Derived>
|
||||
* The implementation is at the end of the file
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Other,
|
||||
int OtherRows=Other::RowsAtCompileTime,
|
||||
int OtherCols=Other::ColsAtCompileTime>
|
||||
struct ei_quaternionbase_assign_impl;
|
||||
|
||||
template<class Derived>
|
||||
class QuaternionBase : public RotationBase<Derived, 3>
|
||||
{
|
||||
typedef RotationBase<Derived, 3> Base;
|
||||
public:
|
||||
using Base::operator*;
|
||||
using Base::derived;
|
||||
|
||||
typedef typename ei_traits<Derived>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename ei_traits<Derived>::Coefficients Coefficients;
|
||||
|
||||
// typedef typename Matrix<Scalar,4,1> Coefficients;
|
||||
/** the type of a 3D vector */
|
||||
typedef Matrix<Scalar,3,1> Vector3;
|
||||
/** the equivalent rotation matrix type */
|
||||
typedef Matrix<Scalar,3,3> Matrix3;
|
||||
/** the equivalent angle-axis type */
|
||||
typedef AngleAxis<Scalar> AngleAxisType;
|
||||
|
||||
|
||||
|
||||
/** \returns the \c x coefficient */
|
||||
inline Scalar x() const { return this->derived().coeffs().coeff(0); }
|
||||
/** \returns the \c y coefficient */
|
||||
inline Scalar y() const { return this->derived().coeffs().coeff(1); }
|
||||
/** \returns the \c z coefficient */
|
||||
inline Scalar z() const { return this->derived().coeffs().coeff(2); }
|
||||
/** \returns the \c w coefficient */
|
||||
inline Scalar w() const { return this->derived().coeffs().coeff(3); }
|
||||
|
||||
/** \returns a reference to the \c x coefficient */
|
||||
inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
|
||||
/** \returns a reference to the \c y coefficient */
|
||||
inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
|
||||
/** \returns a reference to the \c z coefficient */
|
||||
inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
|
||||
/** \returns a reference to the \c w coefficient */
|
||||
inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
|
||||
|
||||
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
|
||||
inline const VectorBlock<Coefficients,3> vec() const { return coeffs().template start<3>(); }
|
||||
|
||||
/** \returns a vector expression of the imaginary part (x,y,z) */
|
||||
inline VectorBlock<Coefficients,3> vec() { return coeffs().template start<3>(); }
|
||||
|
||||
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
|
||||
inline const typename ei_traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
|
||||
|
||||
/** \returns a vector expression of the coefficients (x,y,z,w) */
|
||||
inline typename ei_traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
|
||||
|
||||
template<class OtherDerived> Derived& operator=(const QuaternionBase<OtherDerived>& other);
|
||||
|
||||
// disabled this copy operator as it is giving very strange compilation errors when compiling
|
||||
// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
|
||||
// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
|
||||
// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
|
||||
// Derived& operator=(const QuaternionBase& other)
|
||||
// { return operator=<Derived>(other); }
|
||||
|
||||
Derived& operator=(const AngleAxisType& aa);
|
||||
template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
|
||||
|
||||
/** \returns a quaternion representing an identity rotation
|
||||
* \sa MatrixBase::Identity()
|
||||
*/
|
||||
inline static Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
|
||||
|
||||
/** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
|
||||
*/
|
||||
inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
|
||||
|
||||
/** \returns the squared norm of the quaternion's coefficients
|
||||
* \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
|
||||
*/
|
||||
inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
|
||||
|
||||
/** \returns the norm of the quaternion's coefficients
|
||||
* \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
|
||||
*/
|
||||
inline Scalar norm() const { return coeffs().norm(); }
|
||||
|
||||
/** Normalizes the quaternion \c *this
|
||||
* \sa normalized(), MatrixBase::normalize() */
|
||||
inline void normalize() { coeffs().normalize(); }
|
||||
/** \returns a normalized copy of \c *this
|
||||
* \sa normalize(), MatrixBase::normalized() */
|
||||
inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
|
||||
|
||||
/** \returns the dot product of \c *this and \a other
|
||||
* Geometrically speaking, the dot product of two unit quaternions
|
||||
* corresponds to the cosine of half the angle between the two rotations.
|
||||
* \sa angularDistance()
|
||||
*/
|
||||
template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
|
||||
|
||||
template<class OtherDerived> inline Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
|
||||
|
||||
Matrix3 toRotationMatrix() const;
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
|
||||
|
||||
template<class OtherDerived> inline Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
|
||||
template<class OtherDerived> inline Derived& operator*= (const QuaternionBase<OtherDerived>& q);
|
||||
|
||||
Quaternion<Scalar> inverse() const;
|
||||
Quaternion<Scalar> conjugate() const;
|
||||
|
||||
template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
template<class OtherDerived>
|
||||
bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = precision<Scalar>()) const
|
||||
{ return coeffs().isApprox(other.coeffs(), prec); }
|
||||
|
||||
Vector3 _transformVector(Vector3 v) const;
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
|
||||
{
|
||||
return typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type(
|
||||
coeffs().template cast<NewScalarType>());
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Definition/implementation of Quaternion<Scalar>
|
||||
***************************************************************************/
|
||||
|
||||
/** \geometry_module \ingroup Geometry_Module
|
||||
*
|
||||
* \class Quaternion
|
||||
@ -48,152 +197,13 @@
|
||||
* \sa class AngleAxis, class Transform
|
||||
*/
|
||||
|
||||
template<typename Other,
|
||||
int OtherRows=Other::RowsAtCompileTime,
|
||||
int OtherCols=Other::ColsAtCompileTime>
|
||||
struct ei_quaternionbase_assign_impl;
|
||||
|
||||
template<typename Scalar> class Quaternion; // [XXX] => remove when Quaternion becomes Quaternion
|
||||
|
||||
template<typename Derived>
|
||||
struct ei_traits<QuaternionBase<Derived> >
|
||||
{
|
||||
typedef typename ei_traits<Derived>::Scalar Scalar;
|
||||
enum {
|
||||
PacketAccess = ei_traits<Derived>::PacketAccess
|
||||
};
|
||||
};
|
||||
|
||||
template<class Derived>
|
||||
class QuaternionBase : public RotationBase<Derived, 3>
|
||||
{
|
||||
typedef RotationBase<Derived, 3> Base;
|
||||
public:
|
||||
using Base::operator*;
|
||||
|
||||
typedef typename ei_traits<QuaternionBase<Derived> >::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
// typedef typename Matrix<Scalar,4,1> Coefficients;
|
||||
/** the type of a 3D vector */
|
||||
typedef Matrix<Scalar,3,1> Vector3;
|
||||
/** the equivalent rotation matrix type */
|
||||
typedef Matrix<Scalar,3,3> Matrix3;
|
||||
/** the equivalent angle-axis type */
|
||||
typedef AngleAxis<Scalar> AngleAxisType;
|
||||
|
||||
/** \returns the \c x coefficient */
|
||||
inline Scalar x() const { return this->derived().coeffs().coeff(0); }
|
||||
/** \returns the \c y coefficient */
|
||||
inline Scalar y() const { return this->derived().coeffs().coeff(1); }
|
||||
/** \returns the \c z coefficient */
|
||||
inline Scalar z() const { return this->derived().coeffs().coeff(2); }
|
||||
/** \returns the \c w coefficient */
|
||||
inline Scalar w() const { return this->derived().coeffs().coeff(3); }
|
||||
|
||||
/** \returns a reference to the \c x coefficient */
|
||||
inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
|
||||
/** \returns a reference to the \c y coefficient */
|
||||
inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
|
||||
/** \returns a reference to the \c z coefficient */
|
||||
inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
|
||||
/** \returns a reference to the \c w coefficient */
|
||||
inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
|
||||
|
||||
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
|
||||
inline const VectorBlock<typename ei_traits<Derived>::Coefficients,3> vec() const { return this->derived().coeffs().template start<3>(); }
|
||||
|
||||
/** \returns a vector expression of the imaginary part (x,y,z) */
|
||||
inline VectorBlock<typename ei_traits<Derived>::Coefficients,3> vec() { return this->derived().coeffs().template start<3>(); }
|
||||
|
||||
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
|
||||
inline const typename ei_traits<Derived>::Coefficients& coeffs() const { return this->derived().coeffs(); }
|
||||
|
||||
/** \returns a vector expression of the coefficients (x,y,z,w) */
|
||||
inline typename ei_traits<Derived>::Coefficients& coeffs() { return this->derived().coeffs(); }
|
||||
|
||||
template<class OtherDerived> QuaternionBase& operator=(const QuaternionBase<OtherDerived>& other);
|
||||
QuaternionBase& operator=(const AngleAxisType& aa);
|
||||
template<class OtherDerived>
|
||||
QuaternionBase& operator=(const MatrixBase<OtherDerived>& m);
|
||||
|
||||
/** \returns a quaternion representing an identity rotation
|
||||
* \sa MatrixBase::Identity()
|
||||
*/
|
||||
inline static Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
|
||||
|
||||
/** \sa Quaternion2::Identity(), MatrixBase::setIdentity()
|
||||
*/
|
||||
inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
|
||||
|
||||
/** \returns the squared norm of the quaternion's coefficients
|
||||
* \sa Quaternion2::norm(), MatrixBase::squaredNorm()
|
||||
*/
|
||||
inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
|
||||
|
||||
/** \returns the norm of the quaternion's coefficients
|
||||
* \sa Quaternion2::squaredNorm(), MatrixBase::norm()
|
||||
*/
|
||||
inline Scalar norm() const { return coeffs().norm(); }
|
||||
|
||||
/** Normalizes the quaternion \c *this
|
||||
* \sa normalized(), MatrixBase::normalize() */
|
||||
inline void normalize() { coeffs().normalize(); }
|
||||
/** \returns a normalized version of \c *this
|
||||
* \sa normalize(), MatrixBase::normalized() */
|
||||
inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
|
||||
|
||||
/** \returns the dot product of \c *this and \a other
|
||||
* Geometrically speaking, the dot product of two unit quaternions
|
||||
* corresponds to the cosine of half the angle between the two rotations.
|
||||
* \sa angularDistance()
|
||||
*/
|
||||
template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
|
||||
|
||||
template<class OtherDerived> inline Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
|
||||
|
||||
Matrix3 toRotationMatrix(void) const;
|
||||
|
||||
template<typename Derived1, typename Derived2>
|
||||
QuaternionBase& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
|
||||
|
||||
template<class OtherDerived> inline Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
|
||||
template<class OtherDerived> inline QuaternionBase& operator*= (const QuaternionBase<OtherDerived>& q);
|
||||
|
||||
Quaternion<Scalar> inverse(void) const;
|
||||
Quaternion<Scalar> conjugate(void) const;
|
||||
|
||||
template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const QuaternionBase& other, RealScalar prec = precision<Scalar>()) const
|
||||
{ return coeffs().isApprox(other.coeffs(), prec); }
|
||||
|
||||
Vector3 _transformVector(Vector3 v) const;
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
||||
* then this function smartly returns a const reference to \c *this.
|
||||
*/
|
||||
template<typename NewScalarType>
|
||||
inline typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
|
||||
{
|
||||
return typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type(
|
||||
coeffs().template cast<NewScalarType>());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename _Scalar>
|
||||
struct ei_traits<Quaternion<_Scalar> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef Matrix<_Scalar,4,1> Coefficients;
|
||||
enum{
|
||||
PacketAccess = Aligned
|
||||
PacketAccess = Aligned
|
||||
};
|
||||
};
|
||||
|
||||
@ -239,7 +249,7 @@ public:
|
||||
explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
|
||||
|
||||
/** Copy constructor with scalar type conversion */
|
||||
template<class Derived>
|
||||
template<typename Derived>
|
||||
inline explicit Quaternion(const QuaternionBase<Derived>& other)
|
||||
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
|
||||
|
||||
@ -250,16 +260,29 @@ protected:
|
||||
Coefficients m_coeffs;
|
||||
};
|
||||
|
||||
/* ########### Map<Quaternion> */
|
||||
/** \ingroup Geometry_Module
|
||||
* single precision quaternion type */
|
||||
typedef Quaternion<float> Quaternionf;
|
||||
/** \ingroup Geometry_Module
|
||||
* double precision quaternion type */
|
||||
typedef Quaternion<double> Quaterniond;
|
||||
|
||||
/***************************************************************************
|
||||
* Specialization of Map<Quaternion<Scalar>>
|
||||
***************************************************************************/
|
||||
|
||||
/** \class Map<Quaternion>
|
||||
* \nonstableyet
|
||||
*
|
||||
* \brief Expression of a quaternion
|
||||
* \brief Expression of a quaternion from a memory buffer
|
||||
*
|
||||
* \param Scalar the type of the vector of diagonal coefficients
|
||||
* \param _Scalar the type of the Quaternion coefficients
|
||||
* \param PacketAccess see class Map
|
||||
*
|
||||
* \sa class Quaternion, class QuaternionBase
|
||||
* This is a specialization of class Map for Quaternion. This class allows to view
|
||||
* a 4 scalar memory buffer as an Eigen's Quaternion object.
|
||||
*
|
||||
* \sa class Map, class Quaternion, class QuaternionBase
|
||||
*/
|
||||
template<typename _Scalar, int _PacketAccess>
|
||||
struct ei_traits<Map<Quaternion<_Scalar>, _PacketAccess> >:
|
||||
@ -273,15 +296,23 @@ ei_traits<Quaternion<_Scalar> >
|
||||
};
|
||||
|
||||
template<typename _Scalar, int PacketAccess>
|
||||
class Map<Quaternion<_Scalar>, PacketAccess > : public QuaternionBase<Map<Quaternion<_Scalar>, PacketAccess> >, ei_no_assignment_operator {
|
||||
class Map<Quaternion<_Scalar>, PacketAccess >
|
||||
: public QuaternionBase<Map<Quaternion<_Scalar>, PacketAccess> >,
|
||||
ei_no_assignment_operator
|
||||
{
|
||||
public:
|
||||
|
||||
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename ei_traits<Map>::Coefficients Coefficients;
|
||||
|
||||
typedef typename ei_traits<Map<Quaternion<Scalar>, PacketAccess> >::Coefficients Coefficients;
|
||||
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
||||
*
|
||||
* The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
|
||||
* \code *coeffs == {x, y, z, w} \endcode
|
||||
*
|
||||
* If the template paramter PacketAccess is set to Aligned, then the pointer coeffs must be aligned. */
|
||||
inline Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
|
||||
|
||||
inline Map<Quaternion<Scalar>, PacketAccess >(const Scalar* coeffs) : m_coeffs(coeffs) {}
|
||||
|
||||
inline Coefficients& coeffs() { return m_coeffs;}
|
||||
inline const Coefficients& coeffs() const { return m_coeffs;}
|
||||
|
||||
@ -289,15 +320,20 @@ class Map<Quaternion<_Scalar>, PacketAccess > : public QuaternionBase<Map<Quater
|
||||
Coefficients m_coeffs;
|
||||
};
|
||||
|
||||
typedef Map<Quaternion<double> > QuaternionMapd;
|
||||
typedef Map<Quaternion<float> > QuaternionMapf;
|
||||
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
|
||||
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
|
||||
typedef Map<Quaternion<double> > QuaternionMapd;
|
||||
typedef Map<Quaternion<float> > QuaternionMapf;
|
||||
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
|
||||
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of QuaternionBase methods
|
||||
***************************************************************************/
|
||||
|
||||
// Generic Quaternion * Quaternion product
|
||||
template<int Arch, class Derived, class OtherDerived, typename Scalar, int PacketAccess> struct ei_quat_product
|
||||
// This product can be specialized for a given architecture via the Arch template argument.
|
||||
template<int Arch, class Derived1, class Derived2, typename Scalar, int PacketAccess> struct ei_quat_product
|
||||
{
|
||||
inline static Quaternion<Scalar> run(const QuaternionBase<Derived>& a, const QuaternionBase<OtherDerived>& b){
|
||||
inline static Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
|
||||
return Quaternion<Scalar>
|
||||
(
|
||||
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
|
||||
@ -311,21 +347,22 @@ template<int Arch, class Derived, class OtherDerived, typename Scalar, int Packe
|
||||
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
|
||||
template <class Derived>
|
||||
template <class OtherDerived>
|
||||
inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
|
||||
inline Quaternion<typename ei_traits<Derived>::Scalar>
|
||||
QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename OtherDerived::Scalar>::ret),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
return ei_quat_product<EiArch, Derived, OtherDerived,
|
||||
typename ei_traits<Derived>::Scalar,
|
||||
ei_traits<Derived>::PacketAccess && ei_traits<OtherDerived>::PacketAccess>::run(*this, other);
|
||||
return ei_quat_product<EiArch, Derived, OtherDerived,
|
||||
typename ei_traits<Derived>::Scalar,
|
||||
ei_traits<Derived>::PacketAccess && ei_traits<OtherDerived>::PacketAccess>::run(*this, other);
|
||||
}
|
||||
|
||||
/** \sa operator*(Quaternion) */
|
||||
template <class Derived>
|
||||
template <class OtherDerived>
|
||||
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
|
||||
inline Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
|
||||
{
|
||||
return (*this = *this * other);
|
||||
return (derived() = derived() * other.derived());
|
||||
}
|
||||
|
||||
/** Rotation of a vector by a quaternion.
|
||||
@ -350,21 +387,21 @@ QuaternionBase<Derived>::_transformVector(Vector3 v) const
|
||||
|
||||
template<class Derived>
|
||||
template<class OtherDerived>
|
||||
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
|
||||
inline Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
|
||||
{
|
||||
coeffs() = other.coeffs();
|
||||
return *this;
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
|
||||
*/
|
||||
template<class Derived>
|
||||
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
|
||||
inline Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
|
||||
{
|
||||
Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
|
||||
this->w() = ei_cos(ha);
|
||||
this->vec() = ei_sin(ha) * aa.axis();
|
||||
return *this;
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** Set \c *this from the expression \a xpr:
|
||||
@ -375,12 +412,12 @@ inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const AngleAx
|
||||
|
||||
template<class Derived>
|
||||
template<class MatrixDerived>
|
||||
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
|
||||
inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename MatrixDerived::Scalar>::ret),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
ei_quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
|
||||
return *this;
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
|
||||
@ -434,7 +471,7 @@ QuaternionBase<Derived>::toRotationMatrix(void) const
|
||||
*/
|
||||
template<class Derived>
|
||||
template<typename Derived1, typename Derived2>
|
||||
inline QuaternionBase<Derived>& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
|
||||
inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
|
||||
{
|
||||
Vector3 v0 = a.normalized();
|
||||
Vector3 v1 = b.normalized();
|
||||
@ -458,7 +495,7 @@ inline QuaternionBase<Derived>& QuaternionBase<Derived>::setFromTwoVectors(const
|
||||
Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
|
||||
this->w() = ei_sqrt(w2);
|
||||
this->vec() = axis * ei_sqrt(Scalar(1) - w2);
|
||||
return *this;
|
||||
return derived();
|
||||
}
|
||||
Vector3 axis = v0.cross(v1);
|
||||
Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
|
||||
@ -466,17 +503,17 @@ inline QuaternionBase<Derived>& QuaternionBase<Derived>::setFromTwoVectors(const
|
||||
this->vec() = axis * invs;
|
||||
this->w() = s * Scalar(0.5);
|
||||
|
||||
return *this;
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** \returns the multiplicative inverse of \c *this
|
||||
* Note that in most cases, i.e., if you simply want the opposite rotation,
|
||||
* and/or the quaternion is normalized, then it is enough to use the conjugate.
|
||||
*
|
||||
* \sa Quaternion2::conjugate()
|
||||
* \sa QuaternionBase::conjugate()
|
||||
*/
|
||||
template <class Derived>
|
||||
inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::inverse() const
|
||||
inline Quaternion<typename ei_traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
|
||||
{
|
||||
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
|
||||
Scalar n2 = this->squaredNorm();
|
||||
@ -485,7 +522,7 @@ inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> Quaterni
|
||||
else
|
||||
{
|
||||
// return an invalid result to flag the error
|
||||
return Quaternion<Scalar>(ei_traits<Derived>::Coefficients::Zero());
|
||||
return Quaternion<Scalar>(Coefficients::Zero());
|
||||
}
|
||||
}
|
||||
|
||||
@ -496,7 +533,8 @@ inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> Quaterni
|
||||
* \sa Quaternion2::inverse()
|
||||
*/
|
||||
template <class Derived>
|
||||
inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::conjugate() const
|
||||
inline Quaternion<typename ei_traits<Derived>::Scalar>
|
||||
QuaternionBase<Derived>::conjugate() const
|
||||
{
|
||||
return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
|
||||
}
|
||||
@ -506,11 +544,12 @@ inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> Quaterni
|
||||
*/
|
||||
template <class Derived>
|
||||
template <class OtherDerived>
|
||||
inline typename ei_traits<QuaternionBase<Derived> >::Scalar QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
|
||||
inline typename ei_traits<Derived>::Scalar
|
||||
QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
|
||||
{
|
||||
double d = ei_abs(this->dot(other));
|
||||
if (d>=1.0)
|
||||
return 0;
|
||||
return Scalar(0);
|
||||
return Scalar(2) * std::acos(d);
|
||||
}
|
||||
|
||||
@ -519,13 +558,14 @@ inline typename ei_traits<QuaternionBase<Derived> >::Scalar QuaternionBase<Deriv
|
||||
*/
|
||||
template <class Derived>
|
||||
template <class OtherDerived>
|
||||
Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
|
||||
Quaternion<typename ei_traits<Derived>::Scalar>
|
||||
QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
|
||||
{
|
||||
static const Scalar one = Scalar(1) - precision<Scalar>();
|
||||
Scalar d = this->dot(other);
|
||||
Scalar absD = ei_abs(d);
|
||||
if (absD>=one)
|
||||
return Quaternion<Scalar>(*this);
|
||||
return Quaternion<Scalar>(derived());
|
||||
|
||||
// theta is the angle between the 2 quaternions
|
||||
Scalar theta = std::acos(absD);
|
||||
@ -549,7 +589,7 @@ struct ei_quaternionbase_assign_impl<Other,3,3>
|
||||
// This algorithm comes from "Quaternion Calculus and Fast Animation",
|
||||
// Ken Shoemake, 1987 SIGGRAPH course notes
|
||||
Scalar t = mat.trace();
|
||||
if (t > 0)
|
||||
if (t > Scalar(0))
|
||||
{
|
||||
t = ei_sqrt(t + Scalar(1.0));
|
||||
q.w() = Scalar(0.5)*t;
|
||||
|
@ -436,14 +436,13 @@ struct ei_solve_retval<SVD<_MatrixType>, Rhs>
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
const int cols = this->cols();
|
||||
ei_assert(rhs().rows() == dec().rows());
|
||||
|
||||
for (int j=0; j<cols; ++j)
|
||||
for (int j=0; j<cols(); ++j)
|
||||
{
|
||||
Matrix<Scalar,MatrixType::RowsAtCompileTime,1> aux = dec().matrixU().adjoint() * rhs().col(j);
|
||||
|
||||
for (int i = 0; i <dec().rows(); ++i)
|
||||
for (int i = 0; i < dec().rows(); ++i)
|
||||
{
|
||||
Scalar si = dec().singularValues().coeff(i);
|
||||
if(si == RealScalar(0))
|
||||
@ -451,8 +450,10 @@ struct ei_solve_retval<SVD<_MatrixType>, Rhs>
|
||||
else
|
||||
aux.coeffRef(i) /= si;
|
||||
}
|
||||
|
||||
dst.col(j) = dec().matrixV() * aux;
|
||||
const int minsize = std::min(dec().rows(),dec().cols());
|
||||
dst.col(j).start(minsize) = aux.start(minsize);
|
||||
if(dec().cols()>dec().rows()) dst.col(j).end(cols()-minsize).setZero();
|
||||
dst.col(j) = dec().matrixV() * dst.col(j);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@ -126,6 +126,7 @@ class SparseLLT<MatrixType,Cholmod> : public SparseLLT<MatrixType>
|
||||
typedef SparseLLT<MatrixType> Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::RealScalar RealScalar;
|
||||
typedef typename Base::CholMatrixType CholMatrixType;
|
||||
using Base::MatrixLIsDirty;
|
||||
using Base::SupernodalFactorIsDirty;
|
||||
using Base::m_flags;
|
||||
@ -154,7 +155,7 @@ class SparseLLT<MatrixType,Cholmod> : public SparseLLT<MatrixType>
|
||||
cholmod_finish(&m_cholmod);
|
||||
}
|
||||
|
||||
inline const typename Base::CholMatrixType& matrixL(void) const;
|
||||
inline const CholMatrixType& matrixL() const;
|
||||
|
||||
template<typename Derived>
|
||||
bool solveInPlace(MatrixBase<Derived> &b) const;
|
||||
@ -198,7 +199,7 @@ void SparseLLT<MatrixType,Cholmod>::compute(const MatrixType& a)
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
inline const typename SparseLLT<MatrixType>::CholMatrixType&
|
||||
inline const typename SparseLLT<MatrixType,Cholmod>::CholMatrixType&
|
||||
SparseLLT<MatrixType,Cholmod>::matrixL() const
|
||||
{
|
||||
if (m_status & MatrixLIsDirty)
|
||||
|
@ -2,7 +2,7 @@
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
@ -27,7 +27,7 @@
|
||||
#define EIGEN_BENCH_TIMER_H
|
||||
|
||||
#ifndef WIN32
|
||||
#include <sys/time.h>
|
||||
#include <time.h>
|
||||
#include <unistd.h>
|
||||
#else
|
||||
#define NOMINMAX
|
||||
@ -41,6 +41,11 @@ namespace Eigen
|
||||
{
|
||||
|
||||
/** Elapsed time timer keeping the best try.
|
||||
*
|
||||
* On POSIX platforms we use clock_gettime with CLOCK_PROCESS_CPUTIME_ID.
|
||||
* On Windows we use QueryPerformanceCounter
|
||||
*
|
||||
* Important: on linux, you must link with -lrt
|
||||
*/
|
||||
class BenchTimer
|
||||
{
|
||||
@ -83,10 +88,9 @@ public:
|
||||
QueryPerformanceCounter(&query_ticks);
|
||||
return query_ticks.QuadPart/m_frequency;
|
||||
#else
|
||||
struct timeval tv;
|
||||
struct timezone tz;
|
||||
gettimeofday(&tv, &tz);
|
||||
return (double)tv.tv_sec + 1.e-6 * (double)tv.tv_usec;
|
||||
timespec ts;
|
||||
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
|
||||
return double(ts.tv_sec) + 1e-9 * double(ts.tv_nsec);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -178,13 +178,13 @@ using namespace Eigen;
|
||||
void bench_eigengemm(MyMatrix& mc, const MyMatrix& ma, const MyMatrix& mb, int nbloops)
|
||||
{
|
||||
for (uint j=0 ; j<nbloops ; ++j)
|
||||
mc += (ma * mb).lazy();
|
||||
mc.noalias() += ma * mb;
|
||||
}
|
||||
|
||||
void bench_eigengemm_normal(MyMatrix& mc, const MyMatrix& ma, const MyMatrix& mb, int nbloops)
|
||||
{
|
||||
for (uint j=0 ; j<nbloops ; ++j)
|
||||
mc += Product<MyMatrix,MyMatrix,NormalProduct>(ma,mb).lazy();
|
||||
mc.noalias() += GeneralProduct<MyMatrix,MyMatrix,UnrolledProduct>(ma,mb);
|
||||
}
|
||||
|
||||
#define MYVERIFY(A,M) if (!(A)) { \
|
||||
|
@ -22,13 +22,10 @@
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include <bench/BenchUtil.h>
|
||||
#include <complex>
|
||||
#include <vector>
|
||||
#include <Eigen/Core>
|
||||
#include <bench/BenchTimer.h>
|
||||
#ifdef USE_FFTW
|
||||
#include <fftw3.h>
|
||||
#endif
|
||||
|
||||
#include <unsupported/Eigen/FFT>
|
||||
|
||||
|
@ -278,18 +278,24 @@ Of course, fixed-size matrices can't be resized.
|
||||
|
||||
|
||||
\subsection TutorialMap Map
|
||||
Any memory buffer can be mapped as an Eigen expression:
|
||||
<table class="tutorial_code"><tr><td>
|
||||
Any memory buffer can be mapped as an Eigen expression using the Map() static method:
|
||||
\code
|
||||
std::vector<float> stlarray(10);
|
||||
Map<VectorXf>(&stlarray[0], stlarray.size()).setOnes();
|
||||
int data[4] = 1, 2, 3, 4;
|
||||
Matrix2i mat2x2(data);
|
||||
MatrixXi mat2x2 = Map<Matrix2i>(data);
|
||||
MatrixXi mat2x2 = Map<MatrixXi>(data,2,2);
|
||||
VectorXf::Map(&stlarray[0], stlarray.size()).squaredNorm();
|
||||
\endcode
|
||||
Here VectorXf::Map returns an object of class Map<VectorXf>, which behaves like a VectorXf except that it uses the existing array. You can write to this object, that will write to the existing array. You can also construct a named obtect to reuse it:
|
||||
\code
|
||||
float array[rows*cols];
|
||||
Map<MatrixXf> m(array,rows,cols);
|
||||
m = othermatrix1 * othermatrix2;
|
||||
m.eigenvalues();
|
||||
\endcode
|
||||
In the fixed-size case, no need to pass sizes:
|
||||
\code
|
||||
float array[9];
|
||||
Map<Matrix3d> m(array);
|
||||
Matrix3d::Map(array).setIdentity();
|
||||
\endcode
|
||||
</td></tr></table>
|
||||
|
||||
|
||||
|
||||
\subsection TutorialCommaInit Comma initializer
|
||||
|
@ -49,6 +49,10 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
ComplexEigenSolver<MatrixType> ei1(a);
|
||||
VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
||||
|
||||
// Regression test for issue #66
|
||||
MatrixType z = MatrixType::Zero(rows,cols);
|
||||
ComplexEigenSolver<MatrixType> eiz(z);
|
||||
VERIFY((eiz.eigenvalues().cwise()==0).all());
|
||||
}
|
||||
|
||||
void test_eigensolver_complex()
|
||||
@ -58,4 +62,3 @@ void test_eigensolver_complex()
|
||||
CALL_SUBTEST_2( eigensolver(MatrixXcd(14,14)) );
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -109,7 +109,7 @@ template<typename Scalar> void sparse_solvers(int rows, int cols)
|
||||
|
||||
initSPD(density, refMat2, m2);
|
||||
|
||||
refMat2.llt().solve(b, &refX);
|
||||
refX = refMat2.llt().solve(b);
|
||||
typedef SparseMatrix<Scalar,LowerTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
|
||||
if (!NumTraits<Scalar>::IsComplex)
|
||||
{
|
||||
@ -152,7 +152,7 @@ template<typename Scalar> void sparse_solvers(int rows, int cols)
|
||||
refMat2 += refMat2.adjoint();
|
||||
refMat2.diagonal() *= 0.5;
|
||||
|
||||
refMat2.llt().solve(b, &refX); // FIXME use LLT to compute the reference because LDLT seems to fail with large matrices
|
||||
refX = refMat2.llt().solve(b); // FIXME use LLT to compute the reference because LDLT seems to fail with large matrices
|
||||
typedef SparseMatrix<Scalar,UpperTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
|
||||
x = b;
|
||||
SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
|
||||
|
@ -33,14 +33,26 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template <typename _NativePtr,typename _PunnedPtr>
|
||||
template <typename _NativeData,typename _PunnedData>
|
||||
struct castable_pointer
|
||||
{
|
||||
castable_pointer(_NativePtr ptr) : _ptr(ptr) {}
|
||||
operator _NativePtr () {return _ptr;}
|
||||
operator _PunnedPtr () {return reinterpret_cast<_PunnedPtr>(_ptr);}
|
||||
castable_pointer(_NativeData * ptr) : _ptr(ptr) { }
|
||||
operator _NativeData * () {return _ptr;}
|
||||
operator _PunnedData * () {return reinterpret_cast<_PunnedData*>(_ptr);}
|
||||
operator const _NativeData * () const {return _ptr;}
|
||||
operator const _PunnedData * () const {return reinterpret_cast<_PunnedData*>(_ptr);}
|
||||
private:
|
||||
_NativePtr _ptr;
|
||||
_NativeData * _ptr;
|
||||
};
|
||||
|
||||
template <typename _NativeData,typename _PunnedData>
|
||||
struct const_castable_pointer
|
||||
{
|
||||
const_castable_pointer(_NativeData * ptr) : _ptr(ptr) { }
|
||||
operator const _NativeData * () const {return _ptr;}
|
||||
operator const _PunnedData * () const {return reinterpret_cast<_PunnedData*>(_ptr);}
|
||||
private:
|
||||
_NativeData * _ptr;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
@ -50,7 +62,8 @@ struct Complex
|
||||
typedef T value_type;
|
||||
|
||||
// constructors
|
||||
Complex(const T& re = T(), const T& im = T()) : _re(re),_im(im) { }
|
||||
Complex() {}
|
||||
Complex(const T& re, const T& im = T()) : _re(re),_im(im) { }
|
||||
Complex(const Complex&other ): _re(other.real()) ,_im(other.imag()) {}
|
||||
|
||||
template<class X>
|
||||
@ -58,40 +71,63 @@ struct Complex
|
||||
template<class X>
|
||||
Complex(const std::complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
|
||||
|
||||
|
||||
// allow binary access to the object as a std::complex
|
||||
typedef castable_pointer< Complex<T>*, StandardComplex* > pointer_type;
|
||||
typedef castable_pointer< const Complex<T>*, const StandardComplex* > const_pointer_type;
|
||||
typedef castable_pointer< Complex<T>, StandardComplex > pointer_type;
|
||||
typedef const_castable_pointer< Complex<T>, StandardComplex > const_pointer_type;
|
||||
|
||||
inline
|
||||
pointer_type operator & () {return pointer_type(this);}
|
||||
|
||||
inline
|
||||
const_pointer_type operator & () const {return const_pointer_type(this);}
|
||||
|
||||
inline
|
||||
operator StandardComplex () const {return std_type();}
|
||||
inline
|
||||
operator StandardComplex & () {return std_type();}
|
||||
|
||||
StandardComplex std_type() const {return StandardComplex(real(),imag());}
|
||||
inline
|
||||
const StandardComplex & std_type() const {return *reinterpret_cast<const StandardComplex*>(this);}
|
||||
|
||||
inline
|
||||
StandardComplex & std_type() {return *reinterpret_cast<StandardComplex*>(this);}
|
||||
|
||||
|
||||
// every sort of accessor and mutator that has ever been in fashion.
|
||||
// For a brief history, search for "std::complex over-encapsulated"
|
||||
// http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#387
|
||||
inline
|
||||
const T & real() const {return _re;}
|
||||
inline
|
||||
const T & imag() const {return _im;}
|
||||
inline
|
||||
T & real() {return _re;}
|
||||
inline
|
||||
T & imag() {return _im;}
|
||||
inline
|
||||
T & real(const T & x) {return _re=x;}
|
||||
inline
|
||||
T & imag(const T & x) {return _im=x;}
|
||||
inline
|
||||
void set_real(const T & x) {_re = x;}
|
||||
inline
|
||||
void set_imag(const T & x) {_im = x;}
|
||||
|
||||
// *** complex member functions: ***
|
||||
inline
|
||||
Complex<T>& operator= (const T& val) { _re=val;_im=0;return *this; }
|
||||
inline
|
||||
Complex<T>& operator+= (const T& val) {_re+=val;return *this;}
|
||||
inline
|
||||
Complex<T>& operator-= (const T& val) {_re-=val;return *this;}
|
||||
inline
|
||||
Complex<T>& operator*= (const T& val) {_re*=val;_im*=val;return *this; }
|
||||
inline
|
||||
Complex<T>& operator/= (const T& val) {_re/=val;_im/=val;return *this; }
|
||||
|
||||
inline
|
||||
Complex& operator= (const Complex& rhs) {_re=rhs._re;_im=rhs._im;return *this;}
|
||||
inline
|
||||
Complex& operator= (const StandardComplex& rhs) {_re=rhs.real();_im=rhs.imag();return *this;}
|
||||
|
||||
template<class X> Complex<T>& operator= (const Complex<X>& rhs) { _re=rhs._re;_im=rhs._im;return *this;}
|
||||
@ -105,8 +141,7 @@ struct Complex
|
||||
T _im;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
T ei_to_std( const T & x) {return x;}
|
||||
//template <typename T> T ei_to_std( const T & x) {return x;}
|
||||
|
||||
template <typename T>
|
||||
std::complex<T> ei_to_std( const Complex<T> & x) {return x.std_type();}
|
||||
@ -165,7 +200,7 @@ operator<< (std::basic_ostream<charT,traits>& ostr, const Complex<T>& rhs)
|
||||
template<class T> Complex<T> log (const Complex<T>&x){return log(ei_to_std(x));}
|
||||
template<class T> Complex<T> log10 (const Complex<T>&x){return log10(ei_to_std(x));}
|
||||
|
||||
template<class T> Complex<T> pow(const Complex<T>&x, int p) {return pow(ei_to_std(x),ei_to_std(p));}
|
||||
template<class T> Complex<T> pow(const Complex<T>&x, int p) {return pow(ei_to_std(x),p);}
|
||||
template<class T> Complex<T> pow(const Complex<T>&x, const T&p) {return pow(ei_to_std(x),ei_to_std(p));}
|
||||
template<class T> Complex<T> pow(const Complex<T>&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
|
||||
template<class T> Complex<T> pow(const T&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
|
||||
@ -175,8 +210,20 @@ operator<< (std::basic_ostream<charT,traits>& ostr, const Complex<T>& rhs)
|
||||
template<class T> Complex<T> sqrt (const Complex<T>&x){return sqrt(ei_to_std(x));}
|
||||
template<class T> Complex<T> tan (const Complex<T>&x){return tan(ei_to_std(x));}
|
||||
template<class T> Complex<T> tanh (const Complex<T>&x){return tanh(ei_to_std(x));}
|
||||
}
|
||||
|
||||
template<typename _Real> struct NumTraits<Complex<_Real> >
|
||||
{
|
||||
typedef _Real Real;
|
||||
typedef Complex<_Real> FloatingPoint;
|
||||
enum {
|
||||
IsComplex = 1,
|
||||
HasFloatingPoint = NumTraits<Real>::HasFloatingPoint,
|
||||
ReadCost = 2,
|
||||
AddCost = 2 * NumTraits<Real>::AddCost,
|
||||
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
|
||||
};
|
||||
};
|
||||
}
|
||||
#endif
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
||||
|
||||
|
@ -28,6 +28,7 @@
|
||||
#include <complex>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <Eigen/Core>
|
||||
|
||||
#ifdef EIGEN_FFTW_DEFAULT
|
||||
// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
|
||||
@ -65,49 +66,87 @@ class FFT
|
||||
typedef typename impl_type::Scalar Scalar;
|
||||
typedef typename impl_type::Complex Complex;
|
||||
|
||||
FFT(const impl_type & impl=impl_type() ) :m_impl(impl) { }
|
||||
enum Flag {
|
||||
Default=0, // goof proof
|
||||
Unscaled=1,
|
||||
HalfSpectrum=2,
|
||||
// SomeOtherSpeedOptimization=4
|
||||
Speedy=32767
|
||||
};
|
||||
|
||||
template <typename _Input>
|
||||
void fwd( Complex * dst, const _Input * src, int nfft)
|
||||
FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { }
|
||||
|
||||
inline
|
||||
bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;}
|
||||
|
||||
inline
|
||||
void SetFlag(Flag f) { m_flag |= (int)f;}
|
||||
|
||||
inline
|
||||
void ClearFlag(Flag f) { m_flag &= (~(int)f);}
|
||||
|
||||
inline
|
||||
void fwd( Complex * dst, const Scalar * src, int nfft)
|
||||
{
|
||||
m_impl.fwd(dst,src,nfft);
|
||||
if ( HasFlag(HalfSpectrum) == false)
|
||||
ReflectSpectrum(dst,nfft);
|
||||
}
|
||||
|
||||
inline
|
||||
void fwd( Complex * dst, const Complex * src, int nfft)
|
||||
{
|
||||
m_impl.fwd(dst,src,nfft);
|
||||
}
|
||||
|
||||
template <typename _Input>
|
||||
inline
|
||||
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
|
||||
{
|
||||
dst.resize( src.size() );
|
||||
fwd( &dst[0],&src[0],src.size() );
|
||||
if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
||||
dst.resize( (src.size()>>1)+1);
|
||||
else
|
||||
dst.resize(src.size());
|
||||
fwd(&dst[0],&src[0],src.size());
|
||||
}
|
||||
|
||||
template<typename InputDerived, typename ComplexDerived>
|
||||
inline
|
||||
void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
|
||||
EIGEN_STATIC_ASSERT((ei_is_same_type<typename ComplexDerived::Scalar, Complex>::ret),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
|
||||
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
|
||||
dst.derived().resize( src.size() );
|
||||
fwd( &dst[0],&src[0],src.size() );
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
|
||||
EIGEN_STATIC_ASSERT((ei_is_same_type<typename ComplexDerived::Scalar, Complex>::ret),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
|
||||
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
|
||||
|
||||
if ( NumTraits< typename InputDerived::Scalar >::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
||||
dst.derived().resize( (src.size()>>1)+1);
|
||||
else
|
||||
dst.derived().resize(src.size());
|
||||
fwd( &dst[0],&src[0],src.size() );
|
||||
}
|
||||
|
||||
template <typename _Output>
|
||||
void inv( _Output * dst, const Complex * src, int nfft)
|
||||
inline
|
||||
void inv( Complex * dst, const Complex * src, int nfft)
|
||||
{
|
||||
m_impl.inv( dst,src,nfft );
|
||||
if ( HasFlag( Unscaled ) == false)
|
||||
scale(dst,1./nfft,nfft);
|
||||
}
|
||||
|
||||
template <typename _Output>
|
||||
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
|
||||
inline
|
||||
void inv( Scalar * dst, const Complex * src, int nfft)
|
||||
{
|
||||
dst.resize( src.size() );
|
||||
inv( &dst[0],&src[0],src.size() );
|
||||
m_impl.inv( dst,src,nfft );
|
||||
if ( HasFlag( Unscaled ) == false)
|
||||
scale(dst,1./nfft,nfft);
|
||||
}
|
||||
|
||||
template<typename OutputDerived, typename ComplexDerived>
|
||||
inline
|
||||
void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
|
||||
@ -117,18 +156,52 @@ class FFT
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
|
||||
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
|
||||
dst.derived().resize( src.size() );
|
||||
|
||||
int nfft = src.size();
|
||||
int nout = HasFlag(HalfSpectrum) ? ((nfft>>1)+1) : nfft;
|
||||
dst.derived().resize( nout );
|
||||
inv( &dst[0],&src[0],src.size() );
|
||||
}
|
||||
|
||||
template <typename _Output>
|
||||
inline
|
||||
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
|
||||
{
|
||||
if ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
||||
dst.resize( 2*(src.size()-1) );
|
||||
else
|
||||
dst.resize( src.size() );
|
||||
inv( &dst[0],&src[0],dst.size() );
|
||||
}
|
||||
|
||||
// TODO: multi-dimensional FFTs
|
||||
|
||||
// TODO: handle Eigen MatrixBase
|
||||
// ---> i added fwd and inv specializations above + unit test, is this enough? (bjacob)
|
||||
|
||||
inline
|
||||
impl_type & impl() {return m_impl;}
|
||||
private:
|
||||
|
||||
template <typename _It,typename _Val>
|
||||
inline
|
||||
void scale(_It x,_Val s,int nx)
|
||||
{
|
||||
for (int k=0;k<nx;++k)
|
||||
*x++ *= s;
|
||||
}
|
||||
|
||||
inline
|
||||
void ReflectSpectrum(Complex * freq,int nfft)
|
||||
{
|
||||
// create the implicit right-half spectrum (conjugate-mirror of the left-half)
|
||||
int nhbins=(nfft>>1)+1;
|
||||
for (int k=nhbins;k < nfft; ++k )
|
||||
freq[k] = conj(freq[nfft-k]);
|
||||
}
|
||||
|
||||
impl_type m_impl;
|
||||
int m_flag;
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
@ -29,7 +29,7 @@ namespace Eigen {
|
||||
|
||||
template<typename A, typename B>
|
||||
struct ei_make_coherent_impl {
|
||||
static void run(A& a, B& b) {}
|
||||
static void run(A&, B&) {}
|
||||
};
|
||||
|
||||
// resize a to match b is a.size()==0, and conversely.
|
||||
|
@ -35,7 +35,7 @@ namespace Eigen {
|
||||
* This class represents a scalar value while tracking its respective derivatives.
|
||||
*
|
||||
* It supports the following list of global math function:
|
||||
* - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
|
||||
* - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
|
||||
* - ei_abs, ei_sqrt, ei_pow, ei_exp, ei_log, ei_sin, ei_cos,
|
||||
* - ei_conj, ei_real, ei_imag, ei_abs2.
|
||||
*
|
||||
@ -48,130 +48,150 @@ template<typename ValueType, typename JacobianType>
|
||||
class AutoDiffVector
|
||||
{
|
||||
public:
|
||||
typedef typename ei_traits<ValueType>::Scalar Scalar;
|
||||
|
||||
//typedef typename ei_traits<ValueType>::Scalar Scalar;
|
||||
typedef typename ei_traits<ValueType>::Scalar BaseScalar;
|
||||
typedef AutoDiffScalar<Matrix<BaseScalar,JacobianType::RowsAtCompileTime,1> > ActiveScalar;
|
||||
typedef ActiveScalar Scalar;
|
||||
typedef AutoDiffScalar<typename JacobianType::ColXpr> CoeffType;
|
||||
|
||||
inline AutoDiffVector() {}
|
||||
|
||||
|
||||
inline AutoDiffVector(const ValueType& values)
|
||||
: m_values(values)
|
||||
{
|
||||
m_jacobian.setZero();
|
||||
}
|
||||
|
||||
|
||||
|
||||
CoeffType operator[] (int i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
|
||||
const CoeffType operator[] (int i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
|
||||
|
||||
CoeffType operator() (int i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
|
||||
const CoeffType operator() (int i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
|
||||
|
||||
CoeffType coeffRef(int i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
|
||||
const CoeffType coeffRef(int i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
|
||||
|
||||
int size() const { return m_values.size(); }
|
||||
|
||||
// FIXME here we could return an expression of the sum
|
||||
Scalar sum() const { /*std::cerr << "sum \n\n";*/ /*std::cerr << m_jacobian.rowwise().sum() << "\n\n";*/ return Scalar(m_values.sum(), m_jacobian.rowwise().sum()); }
|
||||
|
||||
|
||||
inline AutoDiffVector(const ValueType& values, const JacobianType& jac)
|
||||
: m_values(values), m_jacobian(jac)
|
||||
{}
|
||||
|
||||
|
||||
template<typename OtherValueType, typename OtherJacobianType>
|
||||
inline AutoDiffVector(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
|
||||
: m_values(other.values()), m_jacobian(other.jacobian())
|
||||
{}
|
||||
|
||||
|
||||
inline AutoDiffVector(const AutoDiffVector& other)
|
||||
: m_values(other.values()), m_jacobian(other.jacobian())
|
||||
{}
|
||||
|
||||
|
||||
template<typename OtherValueType, typename OtherJacobianType>
|
||||
inline AutoDiffScalar& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
|
||||
inline AutoDiffVector& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
|
||||
{
|
||||
m_values = other.values();
|
||||
m_jacobian = other.jacobian();
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
inline AutoDiffVector& operator=(const AutoDiffVector& other)
|
||||
{
|
||||
m_values = other.values();
|
||||
m_jacobian = other.jacobian();
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
inline const ValueType& values() const { return m_values; }
|
||||
inline ValueType& values() { return m_values; }
|
||||
|
||||
|
||||
inline const JacobianType& jacobian() const { return m_jacobian; }
|
||||
inline JacobianType& jacobian() { return m_jacobian; }
|
||||
|
||||
|
||||
template<typename OtherValueType,typename OtherJacobianType>
|
||||
inline const AutoDiffVector<
|
||||
CwiseBinaryOp<ei_scalar_sum_op<Scalar>,ValueType,OtherValueType> >
|
||||
CwiseBinaryOp<ei_scalar_sum_op<Scalar>,JacobianType,OtherJacobianType> >
|
||||
operator+(const AutoDiffScalar<OtherDerType>& other) const
|
||||
typename MakeCwiseBinaryOp<ei_scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
|
||||
typename MakeCwiseBinaryOp<ei_scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >
|
||||
operator+(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
|
||||
{
|
||||
return AutoDiffVector<
|
||||
CwiseBinaryOp<ei_scalar_sum_op<Scalar>,ValueType,OtherValueType> >
|
||||
CwiseBinaryOp<ei_scalar_sum_op<Scalar>,JacobianType,OtherJacobianType> >(
|
||||
typename MakeCwiseBinaryOp<ei_scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
|
||||
typename MakeCwiseBinaryOp<ei_scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >(
|
||||
m_values + other.values(),
|
||||
m_jacobian + other.jacobian());
|
||||
}
|
||||
|
||||
|
||||
template<typename OtherValueType, typename OtherJacobianType>
|
||||
inline AutoDiffVector&
|
||||
operator+=(const AutoDiffVector<OtherValueType,OtherDerType>& other)
|
||||
operator+=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
|
||||
{
|
||||
m_values += other.values();
|
||||
m_jacobian += other.jacobian();
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
template<typename OtherValueType,typename OtherJacobianType>
|
||||
inline const AutoDiffVector<
|
||||
CwiseBinaryOp<ei_scalar_difference_op<Scalar>,ValueType,OtherValueType> >
|
||||
CwiseBinaryOp<ei_scalar_difference_op<Scalar>,JacobianType,OtherJacobianType> >
|
||||
operator-(const AutoDiffScalar<OtherDerType>& other) const
|
||||
typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
|
||||
typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >
|
||||
operator-(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
|
||||
{
|
||||
return AutoDiffVector<
|
||||
CwiseBinaryOp<ei_scalar_difference_op<Scalar>,ValueType,OtherValueType> >
|
||||
CwiseBinaryOp<ei_scalar_difference_op<Scalar>,JacobianType,OtherJacobianType> >(
|
||||
m_values - other.values(),
|
||||
m_jacobian - other.jacobian());
|
||||
typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
|
||||
typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >(
|
||||
m_values - other.values(),
|
||||
m_jacobian - other.jacobian());
|
||||
}
|
||||
|
||||
|
||||
template<typename OtherValueType, typename OtherJacobianType>
|
||||
inline AutoDiffVector&
|
||||
operator-=(const AutoDiffVector<OtherValueType,OtherDerType>& other)
|
||||
operator-=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
|
||||
{
|
||||
m_values -= other.values();
|
||||
m_jacobian -= other.jacobian();
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
inline const AutoDiffVector<
|
||||
CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, ValueType>
|
||||
CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, JacobianType> >
|
||||
typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, ValueType>::Type,
|
||||
typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, JacobianType>::Type >
|
||||
operator-() const
|
||||
{
|
||||
return AutoDiffVector<
|
||||
CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, ValueType>
|
||||
CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, JacobianType> >(
|
||||
-m_values,
|
||||
-m_jacobian);
|
||||
typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, ValueType>::Type,
|
||||
typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, JacobianType>::Type >(
|
||||
-m_values,
|
||||
-m_jacobian);
|
||||
}
|
||||
|
||||
|
||||
inline const AutoDiffVector<
|
||||
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>
|
||||
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >
|
||||
operator*(const Scalar& other) const
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>::Type,
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>::Type>
|
||||
operator*(const BaseScalar& other) const
|
||||
{
|
||||
return AutoDiffVector<
|
||||
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>
|
||||
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >(
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>::Type,
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>::Type >(
|
||||
m_values * other,
|
||||
(m_jacobian * other));
|
||||
m_jacobian * other);
|
||||
}
|
||||
|
||||
|
||||
friend inline const AutoDiffVector<
|
||||
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>
|
||||
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>::Type,
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>::Type >
|
||||
operator*(const Scalar& other, const AutoDiffVector& v)
|
||||
{
|
||||
return AutoDiffVector<
|
||||
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>
|
||||
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >(
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>::Type,
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>::Type >(
|
||||
v.values() * other,
|
||||
v.jacobian() * other);
|
||||
}
|
||||
|
||||
|
||||
// template<typename OtherValueType,typename OtherJacobianType>
|
||||
// inline const AutoDiffVector<
|
||||
// CwiseBinaryOp<ei_scalar_multiple_op<Scalar>, ValueType, OtherValueType>
|
||||
@ -188,25 +208,25 @@ class AutoDiffVector
|
||||
// m_values.cwise() * other.values(),
|
||||
// (m_jacobian * other.values()).nestByValue() + (m_values * other.jacobian()).nestByValue());
|
||||
// }
|
||||
|
||||
|
||||
inline AutoDiffVector& operator*=(const Scalar& other)
|
||||
{
|
||||
m_values *= other;
|
||||
m_jacobian *= other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
template<typename OtherValueType,typename OtherJacobianType>
|
||||
inline AutoDiffVector& operator*=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
|
||||
{
|
||||
*this = *this * other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
protected:
|
||||
ValueType m_values;
|
||||
JacobianType m_jacobian;
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -166,6 +166,7 @@
|
||||
m_plans.clear();
|
||||
}
|
||||
|
||||
// complex-to-complex forward FFT
|
||||
inline
|
||||
void fwd( Complex * dst,const Complex *src,int nfft)
|
||||
{
|
||||
@ -177,9 +178,6 @@
|
||||
void fwd( Complex * dst,const Scalar * src,int nfft)
|
||||
{
|
||||
get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src) ,nfft);
|
||||
int nhbins=(nfft>>1)+1;
|
||||
for (int k=nhbins;k < nfft; ++k )
|
||||
dst[k] = conj(dst[nfft-k]);
|
||||
}
|
||||
|
||||
// inverse complex-to-complex
|
||||
@ -187,12 +185,6 @@
|
||||
void inv(Complex * dst,const Complex *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
|
||||
|
||||
//TODO move scaling to Eigen::FFT
|
||||
// scaling
|
||||
Scalar s = Scalar(1.)/nfft;
|
||||
for (int k=0;k<nfft;++k)
|
||||
dst[k] *= s;
|
||||
}
|
||||
|
||||
// half-complex to scalar
|
||||
@ -200,11 +192,6 @@
|
||||
void inv( Scalar * dst,const Complex * src,int nfft)
|
||||
{
|
||||
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
|
||||
|
||||
//TODO move scaling to Eigen::FFT
|
||||
Scalar s = Scalar(1.)/nfft;
|
||||
for (int k=0;k<nfft;++k)
|
||||
dst[k] *= s;
|
||||
}
|
||||
|
||||
protected:
|
||||
@ -222,3 +209,5 @@
|
||||
return m_plans[key];
|
||||
}
|
||||
};
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
||||
|
||||
|
@ -27,388 +27,384 @@
|
||||
// This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
|
||||
// Copyright 2003-2009 Mark Borgerding
|
||||
|
||||
template <typename _Scalar>
|
||||
struct ei_kiss_cpx_fft
|
||||
template <typename _Scalar>
|
||||
struct ei_kiss_cpx_fft
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef std::complex<Scalar> Complex;
|
||||
std::vector<Complex> m_twiddles;
|
||||
std::vector<int> m_stageRadix;
|
||||
std::vector<int> m_stageRemainder;
|
||||
std::vector<Complex> m_scratchBuf;
|
||||
bool m_inverse;
|
||||
|
||||
inline
|
||||
void make_twiddles(int nfft,bool inverse)
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef std::complex<Scalar> Complex;
|
||||
std::vector<Complex> m_twiddles;
|
||||
std::vector<int> m_stageRadix;
|
||||
std::vector<int> m_stageRemainder;
|
||||
std::vector<Complex> m_scratchBuf;
|
||||
bool m_inverse;
|
||||
m_inverse = inverse;
|
||||
m_twiddles.resize(nfft);
|
||||
Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
|
||||
for (int i=0;i<nfft;++i)
|
||||
m_twiddles[i] = exp( Complex(0,i*phinc) );
|
||||
}
|
||||
|
||||
void make_twiddles(int nfft,bool inverse)
|
||||
{
|
||||
m_inverse = inverse;
|
||||
m_twiddles.resize(nfft);
|
||||
Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
|
||||
for (int i=0;i<nfft;++i)
|
||||
m_twiddles[i] = exp( Complex(0,i*phinc) );
|
||||
}
|
||||
|
||||
void factorize(int nfft)
|
||||
{
|
||||
//start factoring out 4's, then 2's, then 3,5,7,9,...
|
||||
int n= nfft;
|
||||
int p=4;
|
||||
do {
|
||||
while (n % p) {
|
||||
switch (p) {
|
||||
case 4: p = 2; break;
|
||||
case 2: p = 3; break;
|
||||
default: p += 2; break;
|
||||
}
|
||||
if (p*p>n)
|
||||
p=n;// impossible to have a factor > sqrt(n)
|
||||
}
|
||||
n /= p;
|
||||
m_stageRadix.push_back(p);
|
||||
m_stageRemainder.push_back(n);
|
||||
if ( p > 5 )
|
||||
m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
|
||||
}while(n>1);
|
||||
}
|
||||
|
||||
template <typename _Src>
|
||||
void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
|
||||
{
|
||||
int p = m_stageRadix[stage];
|
||||
int m = m_stageRemainder[stage];
|
||||
Complex * Fout_beg = xout;
|
||||
Complex * Fout_end = xout + p*m;
|
||||
|
||||
if (m>1) {
|
||||
do{
|
||||
// recursive call:
|
||||
// DFT of size m*p performed by doing
|
||||
// p instances of smaller DFTs of size m,
|
||||
// each one takes a decimated version of the input
|
||||
work(stage+1, xout , xin, fstride*p,in_stride);
|
||||
xin += fstride*in_stride;
|
||||
}while( (xout += m) != Fout_end );
|
||||
}else{
|
||||
do{
|
||||
*xout = *xin;
|
||||
xin += fstride*in_stride;
|
||||
}while(++xout != Fout_end );
|
||||
}
|
||||
xout=Fout_beg;
|
||||
|
||||
// recombine the p smaller DFTs
|
||||
switch (p) {
|
||||
case 2: bfly2(xout,fstride,m); break;
|
||||
case 3: bfly3(xout,fstride,m); break;
|
||||
case 4: bfly4(xout,fstride,m); break;
|
||||
case 5: bfly5(xout,fstride,m); break;
|
||||
default: bfly_generic(xout,fstride,m,p); break;
|
||||
}
|
||||
}
|
||||
|
||||
inline
|
||||
void bfly2( Complex * Fout, const size_t fstride, int m)
|
||||
{
|
||||
for (int k=0;k<m;++k) {
|
||||
Complex t = Fout[m+k] * m_twiddles[k*fstride];
|
||||
Fout[m+k] = Fout[k] - t;
|
||||
Fout[k] += t;
|
||||
void factorize(int nfft)
|
||||
{
|
||||
//start factoring out 4's, then 2's, then 3,5,7,9,...
|
||||
int n= nfft;
|
||||
int p=4;
|
||||
do {
|
||||
while (n % p) {
|
||||
switch (p) {
|
||||
case 4: p = 2; break;
|
||||
case 2: p = 3; break;
|
||||
default: p += 2; break;
|
||||
}
|
||||
if (p*p>n)
|
||||
p=n;// impossible to have a factor > sqrt(n)
|
||||
}
|
||||
n /= p;
|
||||
m_stageRadix.push_back(p);
|
||||
m_stageRemainder.push_back(n);
|
||||
if ( p > 5 )
|
||||
m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
|
||||
}while(n>1);
|
||||
}
|
||||
|
||||
inline
|
||||
void bfly4( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
Complex scratch[6];
|
||||
int negative_if_inverse = m_inverse * -2 +1;
|
||||
for (size_t k=0;k<m;++k) {
|
||||
scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
|
||||
scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
|
||||
scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
|
||||
scratch[5] = Fout[k] - scratch[1];
|
||||
|
||||
Fout[k] += scratch[1];
|
||||
scratch[3] = scratch[0] + scratch[2];
|
||||
scratch[4] = scratch[0] - scratch[2];
|
||||
scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
|
||||
|
||||
Fout[k+2*m] = Fout[k] - scratch[3];
|
||||
Fout[k] += scratch[3];
|
||||
Fout[k+m] = scratch[5] + scratch[4];
|
||||
Fout[k+3*m] = scratch[5] - scratch[4];
|
||||
}
|
||||
}
|
||||
|
||||
inline
|
||||
void bfly3( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
size_t k=m;
|
||||
const size_t m2 = 2*m;
|
||||
Complex *tw1,*tw2;
|
||||
Complex scratch[5];
|
||||
Complex epi3;
|
||||
epi3 = m_twiddles[fstride*m];
|
||||
|
||||
tw1=tw2=&m_twiddles[0];
|
||||
template <typename _Src>
|
||||
inline
|
||||
void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
|
||||
{
|
||||
int p = m_stageRadix[stage];
|
||||
int m = m_stageRemainder[stage];
|
||||
Complex * Fout_beg = xout;
|
||||
Complex * Fout_end = xout + p*m;
|
||||
|
||||
if (m>1) {
|
||||
do{
|
||||
scratch[1]=Fout[m] * *tw1;
|
||||
scratch[2]=Fout[m2] * *tw2;
|
||||
|
||||
scratch[3]=scratch[1]+scratch[2];
|
||||
scratch[0]=scratch[1]-scratch[2];
|
||||
tw1 += fstride;
|
||||
tw2 += fstride*2;
|
||||
Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
|
||||
scratch[0] *= epi3.imag();
|
||||
*Fout += scratch[3];
|
||||
Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
|
||||
Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
|
||||
++Fout;
|
||||
}while(--k);
|
||||
// recursive call:
|
||||
// DFT of size m*p performed by doing
|
||||
// p instances of smaller DFTs of size m,
|
||||
// each one takes a decimated version of the input
|
||||
work(stage+1, xout , xin, fstride*p,in_stride);
|
||||
xin += fstride*in_stride;
|
||||
}while( (xout += m) != Fout_end );
|
||||
}else{
|
||||
do{
|
||||
*xout = *xin;
|
||||
xin += fstride*in_stride;
|
||||
}while(++xout != Fout_end );
|
||||
}
|
||||
xout=Fout_beg;
|
||||
|
||||
inline
|
||||
void bfly5( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
||||
size_t u;
|
||||
Complex scratch[13];
|
||||
Complex * twiddles = &m_twiddles[0];
|
||||
Complex *tw;
|
||||
Complex ya,yb;
|
||||
ya = twiddles[fstride*m];
|
||||
yb = twiddles[fstride*2*m];
|
||||
|
||||
Fout0=Fout;
|
||||
Fout1=Fout0+m;
|
||||
Fout2=Fout0+2*m;
|
||||
Fout3=Fout0+3*m;
|
||||
Fout4=Fout0+4*m;
|
||||
|
||||
tw=twiddles;
|
||||
for ( u=0; u<m; ++u ) {
|
||||
scratch[0] = *Fout0;
|
||||
|
||||
scratch[1] = *Fout1 * tw[u*fstride];
|
||||
scratch[2] = *Fout2 * tw[2*u*fstride];
|
||||
scratch[3] = *Fout3 * tw[3*u*fstride];
|
||||
scratch[4] = *Fout4 * tw[4*u*fstride];
|
||||
|
||||
scratch[7] = scratch[1] + scratch[4];
|
||||
scratch[10] = scratch[1] - scratch[4];
|
||||
scratch[8] = scratch[2] + scratch[3];
|
||||
scratch[9] = scratch[2] - scratch[3];
|
||||
|
||||
*Fout0 += scratch[7];
|
||||
*Fout0 += scratch[8];
|
||||
|
||||
scratch[5] = scratch[0] + Complex(
|
||||
(scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
|
||||
(scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
|
||||
);
|
||||
|
||||
scratch[6] = Complex(
|
||||
(scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
|
||||
-(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
|
||||
);
|
||||
|
||||
*Fout1 = scratch[5] - scratch[6];
|
||||
*Fout4 = scratch[5] + scratch[6];
|
||||
|
||||
scratch[11] = scratch[0] +
|
||||
Complex(
|
||||
(scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
|
||||
(scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
|
||||
);
|
||||
|
||||
scratch[12] = Complex(
|
||||
-(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
|
||||
(scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
|
||||
);
|
||||
|
||||
*Fout2=scratch[11]+scratch[12];
|
||||
*Fout3=scratch[11]-scratch[12];
|
||||
|
||||
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
|
||||
}
|
||||
// recombine the p smaller DFTs
|
||||
switch (p) {
|
||||
case 2: bfly2(xout,fstride,m); break;
|
||||
case 3: bfly3(xout,fstride,m); break;
|
||||
case 4: bfly4(xout,fstride,m); break;
|
||||
case 5: bfly5(xout,fstride,m); break;
|
||||
default: bfly_generic(xout,fstride,m,p); break;
|
||||
}
|
||||
}
|
||||
|
||||
/* perform the butterfly for one stage of a mixed radix FFT */
|
||||
inline
|
||||
void bfly_generic(
|
||||
Complex * Fout,
|
||||
const size_t fstride,
|
||||
int m,
|
||||
int p
|
||||
)
|
||||
{
|
||||
int u,k,q1,q;
|
||||
Complex * twiddles = &m_twiddles[0];
|
||||
Complex t;
|
||||
int Norig = m_twiddles.size();
|
||||
Complex * scratchbuf = &m_scratchBuf[0];
|
||||
|
||||
for ( u=0; u<m; ++u ) {
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
scratchbuf[q1] = Fout[ k ];
|
||||
k += m;
|
||||
}
|
||||
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
int twidx=0;
|
||||
Fout[ k ] = scratchbuf[0];
|
||||
for (q=1;q<p;++q ) {
|
||||
twidx += fstride * k;
|
||||
if (twidx>=Norig) twidx-=Norig;
|
||||
t=scratchbuf[q] * twiddles[twidx];
|
||||
Fout[ k ] += t;
|
||||
}
|
||||
k += m;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename _Scalar>
|
||||
struct ei_kissfft_impl
|
||||
inline
|
||||
void bfly2( Complex * Fout, const size_t fstride, int m)
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef std::complex<Scalar> Complex;
|
||||
|
||||
void clear()
|
||||
{
|
||||
m_plans.clear();
|
||||
m_realTwiddles.clear();
|
||||
for (int k=0;k<m;++k) {
|
||||
Complex t = Fout[m+k] * m_twiddles[k*fstride];
|
||||
Fout[m+k] = Fout[k] - t;
|
||||
Fout[k] += t;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename _Src>
|
||||
inline
|
||||
void fwd( Complex * dst,const _Src *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,false).work(0, dst, src, 1,1);
|
||||
inline
|
||||
void bfly4( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
Complex scratch[6];
|
||||
int negative_if_inverse = m_inverse * -2 +1;
|
||||
for (size_t k=0;k<m;++k) {
|
||||
scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
|
||||
scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
|
||||
scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
|
||||
scratch[5] = Fout[k] - scratch[1];
|
||||
|
||||
Fout[k] += scratch[1];
|
||||
scratch[3] = scratch[0] + scratch[2];
|
||||
scratch[4] = scratch[0] - scratch[2];
|
||||
scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
|
||||
|
||||
Fout[k+2*m] = Fout[k] - scratch[3];
|
||||
Fout[k] += scratch[3];
|
||||
Fout[k+m] = scratch[5] + scratch[4];
|
||||
Fout[k+3*m] = scratch[5] - scratch[4];
|
||||
}
|
||||
}
|
||||
|
||||
inline
|
||||
void bfly3( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
size_t k=m;
|
||||
const size_t m2 = 2*m;
|
||||
Complex *tw1,*tw2;
|
||||
Complex scratch[5];
|
||||
Complex epi3;
|
||||
epi3 = m_twiddles[fstride*m];
|
||||
|
||||
tw1=tw2=&m_twiddles[0];
|
||||
|
||||
do{
|
||||
scratch[1]=Fout[m] * *tw1;
|
||||
scratch[2]=Fout[m2] * *tw2;
|
||||
|
||||
scratch[3]=scratch[1]+scratch[2];
|
||||
scratch[0]=scratch[1]-scratch[2];
|
||||
tw1 += fstride;
|
||||
tw2 += fstride*2;
|
||||
Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
|
||||
scratch[0] *= epi3.imag();
|
||||
*Fout += scratch[3];
|
||||
Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
|
||||
Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
|
||||
++Fout;
|
||||
}while(--k);
|
||||
}
|
||||
|
||||
inline
|
||||
void bfly5( Complex * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
||||
size_t u;
|
||||
Complex scratch[13];
|
||||
Complex * twiddles = &m_twiddles[0];
|
||||
Complex *tw;
|
||||
Complex ya,yb;
|
||||
ya = twiddles[fstride*m];
|
||||
yb = twiddles[fstride*2*m];
|
||||
|
||||
Fout0=Fout;
|
||||
Fout1=Fout0+m;
|
||||
Fout2=Fout0+2*m;
|
||||
Fout3=Fout0+3*m;
|
||||
Fout4=Fout0+4*m;
|
||||
|
||||
tw=twiddles;
|
||||
for ( u=0; u<m; ++u ) {
|
||||
scratch[0] = *Fout0;
|
||||
|
||||
scratch[1] = *Fout1 * tw[u*fstride];
|
||||
scratch[2] = *Fout2 * tw[2*u*fstride];
|
||||
scratch[3] = *Fout3 * tw[3*u*fstride];
|
||||
scratch[4] = *Fout4 * tw[4*u*fstride];
|
||||
|
||||
scratch[7] = scratch[1] + scratch[4];
|
||||
scratch[10] = scratch[1] - scratch[4];
|
||||
scratch[8] = scratch[2] + scratch[3];
|
||||
scratch[9] = scratch[2] - scratch[3];
|
||||
|
||||
*Fout0 += scratch[7];
|
||||
*Fout0 += scratch[8];
|
||||
|
||||
scratch[5] = scratch[0] + Complex(
|
||||
(scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
|
||||
(scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
|
||||
);
|
||||
|
||||
scratch[6] = Complex(
|
||||
(scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
|
||||
-(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
|
||||
);
|
||||
|
||||
*Fout1 = scratch[5] - scratch[6];
|
||||
*Fout4 = scratch[5] + scratch[6];
|
||||
|
||||
scratch[11] = scratch[0] +
|
||||
Complex(
|
||||
(scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
|
||||
(scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
|
||||
);
|
||||
|
||||
scratch[12] = Complex(
|
||||
-(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
|
||||
(scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
|
||||
);
|
||||
|
||||
*Fout2=scratch[11]+scratch[12];
|
||||
*Fout3=scratch[11]-scratch[12];
|
||||
|
||||
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
|
||||
}
|
||||
}
|
||||
|
||||
/* perform the butterfly for one stage of a mixed radix FFT */
|
||||
inline
|
||||
void bfly_generic(
|
||||
Complex * Fout,
|
||||
const size_t fstride,
|
||||
int m,
|
||||
int p
|
||||
)
|
||||
{
|
||||
int u,k,q1,q;
|
||||
Complex * twiddles = &m_twiddles[0];
|
||||
Complex t;
|
||||
int Norig = m_twiddles.size();
|
||||
Complex * scratchbuf = &m_scratchBuf[0];
|
||||
|
||||
for ( u=0; u<m; ++u ) {
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
scratchbuf[q1] = Fout[ k ];
|
||||
k += m;
|
||||
}
|
||||
|
||||
// real-to-complex forward FFT
|
||||
// perform two FFTs of src even and src odd
|
||||
// then twiddle to recombine them into the half-spectrum format
|
||||
// then fill in the conjugate symmetric half
|
||||
inline
|
||||
void fwd( Complex * dst,const Scalar * src,int nfft)
|
||||
{
|
||||
if ( nfft&3 ) {
|
||||
// use generic mode for odd
|
||||
get_plan(nfft,false).work(0, dst, src, 1,1);
|
||||
}else{
|
||||
int ncfft = nfft>>1;
|
||||
int ncfft2 = nfft>>2;
|
||||
Complex * rtw = real_twiddles(ncfft2);
|
||||
|
||||
// use optimized mode for even real
|
||||
fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
|
||||
Complex dc = dst[0].real() + dst[0].imag();
|
||||
Complex nyquist = dst[0].real() - dst[0].imag();
|
||||
int k;
|
||||
for ( k=1;k <= ncfft2 ; ++k ) {
|
||||
Complex fpk = dst[k];
|
||||
Complex fpnk = conj(dst[ncfft-k]);
|
||||
Complex f1k = fpk + fpnk;
|
||||
Complex f2k = fpk - fpnk;
|
||||
Complex tw= f2k * rtw[k-1];
|
||||
dst[k] = (f1k + tw) * Scalar(.5);
|
||||
dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
int twidx=0;
|
||||
Fout[ k ] = scratchbuf[0];
|
||||
for (q=1;q<p;++q ) {
|
||||
twidx += fstride * k;
|
||||
if (twidx>=Norig) twidx-=Norig;
|
||||
t=scratchbuf[q] * twiddles[twidx];
|
||||
Fout[ k ] += t;
|
||||
}
|
||||
|
||||
// place conjugate-symmetric half at the end for completeness
|
||||
// TODO: make this configurable ( opt-out )
|
||||
for ( k=1;k < ncfft ; ++k )
|
||||
dst[nfft-k] = conj(dst[k]);
|
||||
dst[0] = dc;
|
||||
dst[ncfft] = nyquist;
|
||||
k += m;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// inverse complex-to-complex
|
||||
inline
|
||||
void inv(Complex * dst,const Complex *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,true).work(0, dst, src, 1,1);
|
||||
scale(dst, nfft, Scalar(1)/nfft );
|
||||
}
|
||||
template <typename _Scalar>
|
||||
struct ei_kissfft_impl
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef std::complex<Scalar> Complex;
|
||||
|
||||
// half-complex to scalar
|
||||
inline
|
||||
void inv( Scalar * dst,const Complex * src,int nfft)
|
||||
{
|
||||
if (nfft&3) {
|
||||
m_tmpBuf.resize(nfft);
|
||||
inv(&m_tmpBuf[0],src,nfft);
|
||||
for (int k=0;k<nfft;++k)
|
||||
dst[k] = m_tmpBuf[k].real();
|
||||
}else{
|
||||
// optimized version for multiple of 4
|
||||
int ncfft = nfft>>1;
|
||||
int ncfft2 = nfft>>2;
|
||||
Complex * rtw = real_twiddles(ncfft2);
|
||||
m_tmpBuf.resize(ncfft);
|
||||
m_tmpBuf[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
|
||||
for (int k = 1; k <= ncfft / 2; ++k) {
|
||||
Complex fk = src[k];
|
||||
Complex fnkc = conj(src[ncfft-k]);
|
||||
Complex fek = fk + fnkc;
|
||||
Complex tmp = fk - fnkc;
|
||||
Complex fok = tmp * conj(rtw[k-1]);
|
||||
m_tmpBuf[k] = fek + fok;
|
||||
m_tmpBuf[ncfft-k] = conj(fek - fok);
|
||||
}
|
||||
scale(&m_tmpBuf[0], ncfft, Scalar(1)/nfft );
|
||||
get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf[0], 1,1);
|
||||
void clear()
|
||||
{
|
||||
m_plans.clear();
|
||||
m_realTwiddles.clear();
|
||||
}
|
||||
|
||||
inline
|
||||
void fwd( Complex * dst,const Complex *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,false).work(0, dst, src, 1,1);
|
||||
}
|
||||
|
||||
// real-to-complex forward FFT
|
||||
// perform two FFTs of src even and src odd
|
||||
// then twiddle to recombine them into the half-spectrum format
|
||||
// then fill in the conjugate symmetric half
|
||||
inline
|
||||
void fwd( Complex * dst,const Scalar * src,int nfft)
|
||||
{
|
||||
if ( nfft&3 ) {
|
||||
// use generic mode for odd
|
||||
m_tmpBuf1.resize(nfft);
|
||||
get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
|
||||
std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
|
||||
}else{
|
||||
int ncfft = nfft>>1;
|
||||
int ncfft2 = nfft>>2;
|
||||
Complex * rtw = real_twiddles(ncfft2);
|
||||
|
||||
// use optimized mode for even real
|
||||
fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
|
||||
Complex dc = dst[0].real() + dst[0].imag();
|
||||
Complex nyquist = dst[0].real() - dst[0].imag();
|
||||
int k;
|
||||
for ( k=1;k <= ncfft2 ; ++k ) {
|
||||
Complex fpk = dst[k];
|
||||
Complex fpnk = conj(dst[ncfft-k]);
|
||||
Complex f1k = fpk + fpnk;
|
||||
Complex f2k = fpk - fpnk;
|
||||
Complex tw= f2k * rtw[k-1];
|
||||
dst[k] = (f1k + tw) * Scalar(.5);
|
||||
dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
|
||||
}
|
||||
dst[0] = dc;
|
||||
dst[ncfft] = nyquist;
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
typedef ei_kiss_cpx_fft<Scalar> PlanData;
|
||||
typedef std::map<int,PlanData> PlanMap;
|
||||
// inverse complex-to-complex
|
||||
inline
|
||||
void inv(Complex * dst,const Complex *src,int nfft)
|
||||
{
|
||||
get_plan(nfft,true).work(0, dst, src, 1,1);
|
||||
}
|
||||
|
||||
PlanMap m_plans;
|
||||
std::map<int, std::vector<Complex> > m_realTwiddles;
|
||||
std::vector<Complex> m_tmpBuf;
|
||||
|
||||
inline
|
||||
int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
|
||||
|
||||
inline
|
||||
PlanData & get_plan(int nfft,bool inverse)
|
||||
{
|
||||
// TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
|
||||
PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
|
||||
if ( pd.m_twiddles.size() == 0 ) {
|
||||
pd.make_twiddles(nfft,inverse);
|
||||
pd.factorize(nfft);
|
||||
// half-complex to scalar
|
||||
inline
|
||||
void inv( Scalar * dst,const Complex * src,int nfft)
|
||||
{
|
||||
if (nfft&3) {
|
||||
m_tmpBuf1.resize(nfft);
|
||||
m_tmpBuf2.resize(nfft);
|
||||
std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
|
||||
for (int k=1;k<(nfft>>1)+1;++k)
|
||||
m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
|
||||
inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
|
||||
for (int k=0;k<nfft;++k)
|
||||
dst[k] = m_tmpBuf2[k].real();
|
||||
}else{
|
||||
// optimized version for multiple of 4
|
||||
int ncfft = nfft>>1;
|
||||
int ncfft2 = nfft>>2;
|
||||
Complex * rtw = real_twiddles(ncfft2);
|
||||
m_tmpBuf1.resize(ncfft);
|
||||
m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
|
||||
for (int k = 1; k <= ncfft / 2; ++k) {
|
||||
Complex fk = src[k];
|
||||
Complex fnkc = conj(src[ncfft-k]);
|
||||
Complex fek = fk + fnkc;
|
||||
Complex tmp = fk - fnkc;
|
||||
Complex fok = tmp * conj(rtw[k-1]);
|
||||
m_tmpBuf1[k] = fek + fok;
|
||||
m_tmpBuf1[ncfft-k] = conj(fek - fok);
|
||||
}
|
||||
return pd;
|
||||
get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
|
||||
}
|
||||
}
|
||||
|
||||
inline
|
||||
Complex * real_twiddles(int ncfft2)
|
||||
{
|
||||
std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
|
||||
if ( (int)twidref.size() != ncfft2 ) {
|
||||
twidref.resize(ncfft2);
|
||||
int ncfft= ncfft2<<1;
|
||||
Scalar pi = acos( Scalar(-1) );
|
||||
for (int k=1;k<=ncfft2;++k)
|
||||
twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
|
||||
}
|
||||
return &twidref[0];
|
||||
}
|
||||
protected:
|
||||
typedef ei_kiss_cpx_fft<Scalar> PlanData;
|
||||
typedef std::map<int,PlanData> PlanMap;
|
||||
|
||||
// TODO move scaling up into Eigen::FFT
|
||||
inline
|
||||
void scale(Complex *dst,int n,Scalar s)
|
||||
{
|
||||
for (int k=0;k<n;++k)
|
||||
dst[k] *= s;
|
||||
PlanMap m_plans;
|
||||
std::map<int, std::vector<Complex> > m_realTwiddles;
|
||||
std::vector<Complex> m_tmpBuf1;
|
||||
std::vector<Complex> m_tmpBuf2;
|
||||
|
||||
inline
|
||||
int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
|
||||
|
||||
inline
|
||||
PlanData & get_plan(int nfft,bool inverse)
|
||||
{
|
||||
// TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
|
||||
PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
|
||||
if ( pd.m_twiddles.size() == 0 ) {
|
||||
pd.make_twiddles(nfft,inverse);
|
||||
pd.factorize(nfft);
|
||||
}
|
||||
};
|
||||
return pd;
|
||||
}
|
||||
|
||||
inline
|
||||
Complex * real_twiddles(int ncfft2)
|
||||
{
|
||||
std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
|
||||
if ( (int)twidref.size() != ncfft2 ) {
|
||||
twidref.resize(ncfft2);
|
||||
int ncfft= ncfft2<<1;
|
||||
Scalar pi = acos( Scalar(-1) );
|
||||
for (int k=1;k<=ncfft2;++k)
|
||||
twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
|
||||
}
|
||||
return &twidref[0];
|
||||
}
|
||||
};
|
||||
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
||||
|
||||
|
@ -26,3 +26,4 @@ if(FFTW_FOUND)
|
||||
ei_add_test(FFTW "-DEIGEN_FFTW_DEFAULT " "-lfftw3 -lfftw3f -lfftw3l" )
|
||||
endif(FFTW_FOUND)
|
||||
|
||||
ei_add_test(Complex)
|
||||
|
77
unsupported/test/Complex.cpp
Normal file
77
unsupported/test/Complex.cpp
Normal file
@ -0,0 +1,77 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
#ifdef EIGEN_TEST_FUNC
|
||||
# include "main.h"
|
||||
#else
|
||||
# include <iostream>
|
||||
# define CALL_SUBTEST(x) x
|
||||
# define VERIFY(x) x
|
||||
# define test_Complex main
|
||||
#endif
|
||||
|
||||
#include <unsupported/Eigen/Complex>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
template <typename T>
|
||||
void take_std( std::complex<T> * dst, int n )
|
||||
{
|
||||
cout << dst[n-1] << endl;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
void syntax()
|
||||
{
|
||||
// this works fine
|
||||
Matrix< Complex<T>, 9, 1> a;
|
||||
std::complex<T> * pa = &a[0];
|
||||
Complex<T> * pa2 = &a[0];
|
||||
take_std( pa,9);
|
||||
|
||||
// this does not work, but I wish it would
|
||||
// take_std(&a[0];)
|
||||
// this does
|
||||
take_std( (std::complex<T> *)&a[0],9);
|
||||
|
||||
// this does not work, but it would be really nice
|
||||
//vector< Complex<T> > a;
|
||||
// (on my gcc 4.4.1 )
|
||||
// std::vector assumes operator& returns a POD pointer
|
||||
|
||||
// this works fine
|
||||
Complex<T> b[9];
|
||||
std::complex<T> * pb = &b[0]; // this works fine
|
||||
|
||||
take_std( pb,9);
|
||||
}
|
||||
|
||||
void test_Complex()
|
||||
{
|
||||
CALL_SUBTEST( syntax<float>() );
|
||||
CALL_SUBTEST( syntax<double>() );
|
||||
CALL_SUBTEST( syntax<long double>() );
|
||||
}
|
@ -101,12 +101,34 @@ void test_scalar_generic(int nfft)
|
||||
ComplexVector outbuf;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
|
||||
|
||||
// make sure it DOESN'T give the right full spectrum answer
|
||||
// if we've asked for half-spectrum
|
||||
fft.SetFlag(fft.HalfSpectrum );
|
||||
fft.fwd( outbuf,inbuf);
|
||||
VERIFY(outbuf.size() == (nfft>>1)+1);
|
||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||
|
||||
fft.ClearFlag(fft.HalfSpectrum );
|
||||
fft.fwd( outbuf,inbuf);
|
||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||
|
||||
ScalarVector buf3;
|
||||
fft.inv( buf3 , outbuf);
|
||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||
|
||||
// verify that the Unscaled flag takes effect
|
||||
ComplexVector buf4;
|
||||
fft.SetFlag(fft.Unscaled);
|
||||
fft.inv( buf4 , outbuf);
|
||||
for (int k=0;k<nfft;++k)
|
||||
buf4[k] *= T(1./nfft);
|
||||
VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
|
||||
|
||||
// verify that ClearFlag works
|
||||
fft.ClearFlag(fft.Unscaled);
|
||||
fft.inv( buf3 , outbuf);
|
||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
@ -136,6 +158,19 @@ void test_complex_generic(int nfft)
|
||||
fft.inv( buf3 , outbuf);
|
||||
|
||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||
|
||||
// verify that the Unscaled flag takes effect
|
||||
ComplexVector buf4;
|
||||
fft.SetFlag(fft.Unscaled);
|
||||
fft.inv( buf4 , outbuf);
|
||||
for (int k=0;k<nfft;++k)
|
||||
buf4[k] *= T(1./nfft);
|
||||
VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
|
||||
|
||||
// verify that ClearFlag works
|
||||
fft.ClearFlag(fft.Unscaled);
|
||||
fft.inv( buf3 , outbuf);
|
||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
Loading…
x
Reference in New Issue
Block a user