* remove a ctor in QuaternionBase as it gives a strange error with GCC 4.4.2.
This commit is contained in:
Benoit Jacob 2009-11-09 09:08:03 -05:00
commit 92749eed11
32 changed files with 1055 additions and 710 deletions

View File

@ -8,6 +8,7 @@
#include "Cholesky"
#include "Jacobi"
#include "Householder"
#include "LU"
// Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module
#if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS>=2)

View File

@ -122,6 +122,7 @@ class PartialReduxExpr : ei_no_assignment_operator,
EIGEN_MEMBER_FUNCTOR(squaredNorm, Size * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(mean, (Size-1)*NumTraits<Scalar>::AddCost + NumTraits<Scalar>::MulCost);
EIGEN_MEMBER_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost);
@ -297,6 +298,13 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
const typename ReturnType<ei_member_sum>::Type sum() const
{ return _expression(); }
/** \returns a row (or column) vector expression of the mean
* of each column (or row) of the referenced expression.
*
* \sa MatrixBase::mean() */
const typename ReturnType<ei_member_mean>::Type mean() const
{ return _expression(); }
/** \returns a row (or column) vector expression representing
* whether \b all coefficients of each respective column (or row) are \c true.
*

View File

@ -93,7 +93,7 @@ public:
? ( int(MayUnrollCompletely) && int(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) )
: int(NoUnrolling)
};
static void debug()
{
EIGEN_DEBUG_VAR(DstIsAligned)

View File

@ -350,7 +350,7 @@ struct ei_scalar_multiple_op {
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_pmul(a, ei_pset1(m_other)); }
const Scalar m_other;
typename ei_makeconst<typename NumTraits<Scalar>::Nested>::type m_other;
private:
ei_scalar_multiple_op& operator=(const ei_scalar_multiple_op&);
};
@ -364,7 +364,7 @@ struct ei_scalar_multiple2_op {
EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const ei_scalar_multiple2_op& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
const Scalar2 m_other;
typename ei_makeconst<typename NumTraits<Scalar2>::Nested>::type m_other;
};
template<typename Scalar1,typename Scalar2>
struct ei_functor_traits<ei_scalar_multiple2_op<Scalar1,Scalar2> >
@ -393,7 +393,7 @@ struct ei_scalar_quotient1_impl<Scalar,false> {
EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {}
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
const Scalar m_other;
typename ei_makeconst<typename NumTraits<Scalar>::Nested>::type m_other;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,false> >

View File

@ -145,12 +145,6 @@ template<typename Derived> class MatrixBase
#endif
};
/** Default constructor. Just checks at compile-time for self-consistency of the flags. */
MatrixBase()
{
ei_assert(ei_are_flags_consistent<Flags>::ret);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
* (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
@ -177,7 +171,7 @@ template<typename Derived> class MatrixBase
inline int diagonalSize() const { return std::min(rows(),cols()); }
/** \returns the number of nonzero coefficients which is in practice the number
* of stored coefficients. */
inline int nonZeros() const { return derived().nonZeros(); }
inline int nonZeros() const { return size(); }
/** \returns true if either the number of rows or the number of columns is equal to 1.
* In other words, this function returns
* \code rows()==1 || cols()==1 \endcode
@ -645,8 +639,9 @@ template<typename Derived> class MatrixBase
const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
binaryExpr(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const;
Scalar sum() const;
Scalar mean() const;
Scalar trace() const;
Scalar prod() const;
@ -811,6 +806,24 @@ template<typename Derived> class MatrixBase
#ifdef EIGEN_MATRIXBASE_PLUGIN
#include EIGEN_MATRIXBASE_PLUGIN
#endif
protected:
/** Default constructor. Do nothing. */
MatrixBase()
{
/* Just checks for self-consistency of the flags.
* Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
*/
#ifdef EIGEN_INTERNAL_DEBUGGING
EIGEN_STATIC_ASSERT(ei_are_flags_consistent<Flags>::ret,
INVALID_MATRIXBASE_TEMPLATE_PARAMETERS)
#endif
}
private:
explicit MatrixBase(int);
MatrixBase(int,int);
template<typename OtherDerived> explicit MatrixBase(const MatrixBase<OtherDerived>&);
};
#endif // EIGEN_MATRIXBASE_H

View File

@ -52,6 +52,7 @@ template<> struct NumTraits<int>
{
typedef int Real;
typedef double FloatingPoint;
typedef int Nested;
enum {
IsComplex = 0,
HasFloatingPoint = 0,
@ -65,6 +66,7 @@ template<> struct NumTraits<float>
{
typedef float Real;
typedef float FloatingPoint;
typedef float Nested;
enum {
IsComplex = 0,
HasFloatingPoint = 1,
@ -78,6 +80,7 @@ template<> struct NumTraits<double>
{
typedef double Real;
typedef double FloatingPoint;
typedef double Nested;
enum {
IsComplex = 0,
HasFloatingPoint = 1,
@ -91,6 +94,7 @@ template<typename _Real> struct NumTraits<std::complex<_Real> >
{
typedef _Real Real;
typedef std::complex<_Real> FloatingPoint;
typedef std::complex<_Real> Nested;
enum {
IsComplex = 1,
HasFloatingPoint = NumTraits<Real>::HasFloatingPoint,
@ -104,6 +108,7 @@ template<> struct NumTraits<long long int>
{
typedef long long int Real;
typedef long double FloatingPoint;
typedef long long int Nested;
enum {
IsComplex = 0,
HasFloatingPoint = 0,
@ -117,6 +122,7 @@ template<> struct NumTraits<long double>
{
typedef long double Real;
typedef long double FloatingPoint;
typedef long double Nested;
enum {
IsComplex = 0,
HasFloatingPoint = 1,
@ -130,6 +136,7 @@ template<> struct NumTraits<bool>
{
typedef bool Real;
typedef float FloatingPoint;
typedef bool Nested;
enum {
IsComplex = 0,
HasFloatingPoint = 0,

View File

@ -342,7 +342,7 @@ MatrixBase<Derived>::maxCoeff() const
/** \returns the sum of all coefficients of *this
*
* \sa trace(), prod()
* \sa trace(), prod(), mean()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
@ -351,12 +351,23 @@ MatrixBase<Derived>::sum() const
return this->redux(Eigen::ei_scalar_sum_op<Scalar>());
}
/** \returns the mean of all coefficients of *this
*
* \sa trace(), prod(), sum()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar
MatrixBase<Derived>::mean() const
{
return this->redux(Eigen::ei_scalar_sum_op<Scalar>()) / this->size();
}
/** \returns the product of all coefficients of *this
*
* Example: \include MatrixBase_prod.cpp
* Output: \verbinclude MatrixBase_prod.out
*
* \sa sum()
* \sa sum(), mean(), trace()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar

View File

@ -69,7 +69,6 @@ template<typename MatrixType> class Transpose
inline int rows() const { return m_matrix.cols(); }
inline int cols() const { return m_matrix.rows(); }
inline int nonZeros() const { return m_matrix.nonZeros(); }
inline int stride() const { return m_matrix.stride(); }
inline Scalar* data() { return m_matrix.data(); }
inline const Scalar* data() const { return m_matrix.data(); }
@ -354,5 +353,5 @@ lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei
return lazyAssign(static_cast<const MatrixBase<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedB> > > > >& >(other));
}
#endif
#endif // EIGEN_TRANSPOSE_H

View File

@ -220,8 +220,14 @@ template<> EIGEN_STRONG_INLINE void ei_pstoreu<double>(double* to, const Packet2
template<> EIGEN_STRONG_INLINE void ei_pstoreu<float>(float* to, const Packet4f& from) { ei_pstoreu((double*)to, _mm_castps_pd(from)); }
template<> EIGEN_STRONG_INLINE void ei_pstoreu<int>(int* to, const Packet4i& from) { ei_pstoreu((double*)to, _mm_castsi128_pd(from)); }
#ifdef _MSC_VER
// this fix internal compilation error
#if defined(_MSC_VER) && (_MSC_VER <= 1500) && defined(_WIN64)
// The temporary variable fixes an internal compilation error.
// Direct of the struct members fixed bug #62.
template<> EIGEN_STRONG_INLINE float ei_pfirst<Packet4f>(const Packet4f& a) { return a.m128_f32[0]; }
template<> EIGEN_STRONG_INLINE double ei_pfirst<Packet2d>(const Packet2d& a) { return a.m128d_f64[0]; }
template<> EIGEN_STRONG_INLINE int ei_pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
#elif defined(_MSC_VER) && (_MSC_VER <= 1500)
// The temporary variable fixes an internal compilation error.
template<> EIGEN_STRONG_INLINE float ei_pfirst<Packet4f>(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; }
template<> EIGEN_STRONG_INLINE double ei_pfirst<Packet2d>(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; }
template<> EIGEN_STRONG_INLINE int ei_pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }

View File

@ -83,7 +83,7 @@ inline void* ei_aligned_malloc(size_t size)
ei_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
#endif
void *result;
void *result;
#if !EIGEN_ALIGN
result = malloc(size);
#elif EIGEN_MALLOC_ALREADY_ALIGNED
@ -97,7 +97,7 @@ inline void* ei_aligned_malloc(size_t size)
#else
result = ei_handmade_aligned_malloc(size);
#endif
#ifdef EIGEN_EXCEPTIONS
if(result == 0)
throw std::bad_alloc();
@ -324,34 +324,34 @@ public:
typedef aligned_allocator<U> other;
};
pointer address( reference value ) const
pointer address( reference value ) const
{
return &value;
}
const_pointer address( const_reference value ) const
const_pointer address( const_reference value ) const
{
return &value;
}
aligned_allocator() throw()
aligned_allocator() throw()
{
}
aligned_allocator( const aligned_allocator& ) throw()
aligned_allocator( const aligned_allocator& ) throw()
{
}
template<class U>
aligned_allocator( const aligned_allocator<U>& ) throw()
aligned_allocator( const aligned_allocator<U>& ) throw()
{
}
~aligned_allocator() throw()
~aligned_allocator() throw()
{
}
size_type max_size() const throw()
size_type max_size() const throw()
{
return std::numeric_limits<size_type>::max();
}
@ -362,24 +362,24 @@ public:
return static_cast<pointer>( ei_aligned_malloc( num * sizeof(T) ) );
}
void construct( pointer p, const T& value )
void construct( pointer p, const T& value )
{
::new( p ) T( value );
}
void destroy( pointer p )
void destroy( pointer p )
{
p->~T();
}
void deallocate( pointer p, size_type /*num*/ )
void deallocate( pointer p, size_type /*num*/ )
{
ei_aligned_free( p );
}
bool operator!=(const aligned_allocator<T>& other) const
{ return false; }
bool operator==(const aligned_allocator<T>& other) const
{ return true; }
};

View File

@ -64,6 +64,13 @@ template<typename T> struct ei_cleantype<T&> { typedef typename ei_cleant
template<typename T> struct ei_cleantype<const T*> { typedef typename ei_cleantype<T>::type type; };
template<typename T> struct ei_cleantype<T*> { typedef typename ei_cleantype<T>::type type; };
template<typename T> struct ei_makeconst { typedef const T type; };
template<typename T> struct ei_makeconst<const T> { typedef const T type; };
template<typename T> struct ei_makeconst<T&> { typedef const T& type; };
template<typename T> struct ei_makeconst<const T&> { typedef const T& type; };
template<typename T> struct ei_makeconst<T*> { typedef const T* type; };
template<typename T> struct ei_makeconst<const T*> { typedef const T* type; };
/** \internal Allows to enable/disable an overload
* according to a compile time condition.
*/

View File

@ -76,6 +76,7 @@
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES,
THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES,
INVALID_MATRIX_TEMPLATE_PARAMETERS,
INVALID_MATRIXBASE_TEMPLATE_PARAMETERS,
BOTH_MATRICES_MUST_HAVE_THE_SAME_STORAGE_ORDER,
THIS_METHOD_IS_ONLY_FOR_DIAGONAL_MATRIX,
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE,

View File

@ -1,4 +1,4 @@
// This file is part of Eigen, a lightweight C++ template library
// // This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>

View File

@ -167,10 +167,11 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
//locate the range in which to iterate
while(iu > 0)
{
d = ei_norm1(m_matT.coeffRef(iu,iu)) + ei_norm1(m_matT.coeffRef(iu-1,iu-1));
sd = ei_norm1(m_matT.coeffRef(iu,iu-1));
d = ei_norm1(m_matT.coeff(iu,iu)) + ei_norm1(m_matT.coeff(iu-1,iu-1));
sd = ei_norm1(m_matT.coeff(iu,iu-1));
if(sd >= eps * d) break; // FIXME : precision criterion ??
if(!ei_isMuchSmallerThan(sd,d,eps))
break;
m_matT.coeffRef(iu,iu-1) = Complex(0);
iter = 0;
@ -187,13 +188,14 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
}
il = iu-1;
while( il > 0 )
while(il > 0)
{
// check if the current 2x2 block on the diagonal is upper triangular
d = ei_norm1(m_matT.coeffRef(il,il)) + ei_norm1(m_matT.coeffRef(il-1,il-1));
sd = ei_norm1(m_matT.coeffRef(il,il-1));
d = ei_norm1(m_matT.coeff(il,il)) + ei_norm1(m_matT.coeff(il-1,il-1));
sd = ei_norm1(m_matT.coeff(il,il-1));
if(sd < eps * d) break; // FIXME : precision criterion ??
if(ei_isMuchSmallerThan(sd,d,eps))
break;
--il;
}

View File

@ -26,6 +26,155 @@
#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H
/***************************************************************************
* Definition of QuaternionBase<Derived>
* The implementation is at the end of the file
***************************************************************************/
template<typename Other,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct ei_quaternionbase_assign_impl;
template<class Derived>
class QuaternionBase : public RotationBase<Derived, 3>
{
typedef RotationBase<Derived, 3> Base;
public:
using Base::operator*;
using Base::derived;
typedef typename ei_traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename ei_traits<Derived>::Coefficients Coefficients;
// typedef typename Matrix<Scalar,4,1> Coefficients;
/** the type of a 3D vector */
typedef Matrix<Scalar,3,1> Vector3;
/** the equivalent rotation matrix type */
typedef Matrix<Scalar,3,3> Matrix3;
/** the equivalent angle-axis type */
typedef AngleAxis<Scalar> AngleAxisType;
/** \returns the \c x coefficient */
inline Scalar x() const { return this->derived().coeffs().coeff(0); }
/** \returns the \c y coefficient */
inline Scalar y() const { return this->derived().coeffs().coeff(1); }
/** \returns the \c z coefficient */
inline Scalar z() const { return this->derived().coeffs().coeff(2); }
/** \returns the \c w coefficient */
inline Scalar w() const { return this->derived().coeffs().coeff(3); }
/** \returns a reference to the \c x coefficient */
inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
/** \returns a reference to the \c y coefficient */
inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
/** \returns a reference to the \c z coefficient */
inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
/** \returns a reference to the \c w coefficient */
inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
inline const VectorBlock<Coefficients,3> vec() const { return coeffs().template start<3>(); }
/** \returns a vector expression of the imaginary part (x,y,z) */
inline VectorBlock<Coefficients,3> vec() { return coeffs().template start<3>(); }
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
inline const typename ei_traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
/** \returns a vector expression of the coefficients (x,y,z,w) */
inline typename ei_traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
template<class OtherDerived> Derived& operator=(const QuaternionBase<OtherDerived>& other);
// disabled this copy operator as it is giving very strange compilation errors when compiling
// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
// Derived& operator=(const QuaternionBase& other)
// { return operator=<Derived>(other); }
Derived& operator=(const AngleAxisType& aa);
template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::Identity()
*/
inline static Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
/** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
*/
inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
/** \returns the squared norm of the quaternion's coefficients
* \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
*/
inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
/** \returns the norm of the quaternion's coefficients
* \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
*/
inline Scalar norm() const { return coeffs().norm(); }
/** Normalizes the quaternion \c *this
* \sa normalized(), MatrixBase::normalize() */
inline void normalize() { coeffs().normalize(); }
/** \returns a normalized copy of \c *this
* \sa normalize(), MatrixBase::normalized() */
inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
/** \returns the dot product of \c *this and \a other
* Geometrically speaking, the dot product of two unit quaternions
* corresponds to the cosine of half the angle between the two rotations.
* \sa angularDistance()
*/
template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
template<class OtherDerived> inline Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
Matrix3 toRotationMatrix() const;
template<typename Derived1, typename Derived2>
Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
template<class OtherDerived> inline Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
template<class OtherDerived> inline Derived& operator*= (const QuaternionBase<OtherDerived>& q);
Quaternion<Scalar> inverse() const;
Quaternion<Scalar> conjugate() const;
template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
template<class OtherDerived>
bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = precision<Scalar>()) const
{ return coeffs().isApprox(other.coeffs(), prec); }
Vector3 _transformVector(Vector3 v) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
{
return typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type(
coeffs().template cast<NewScalarType>());
}
};
/***************************************************************************
* Definition/implementation of Quaternion<Scalar>
***************************************************************************/
/** \geometry_module \ingroup Geometry_Module
*
* \class Quaternion
@ -48,152 +197,13 @@
* \sa class AngleAxis, class Transform
*/
template<typename Other,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct ei_quaternionbase_assign_impl;
template<typename Scalar> class Quaternion; // [XXX] => remove when Quaternion becomes Quaternion
template<typename Derived>
struct ei_traits<QuaternionBase<Derived> >
{
typedef typename ei_traits<Derived>::Scalar Scalar;
enum {
PacketAccess = ei_traits<Derived>::PacketAccess
};
};
template<class Derived>
class QuaternionBase : public RotationBase<Derived, 3>
{
typedef RotationBase<Derived, 3> Base;
public:
using Base::operator*;
typedef typename ei_traits<QuaternionBase<Derived> >::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
// typedef typename Matrix<Scalar,4,1> Coefficients;
/** the type of a 3D vector */
typedef Matrix<Scalar,3,1> Vector3;
/** the equivalent rotation matrix type */
typedef Matrix<Scalar,3,3> Matrix3;
/** the equivalent angle-axis type */
typedef AngleAxis<Scalar> AngleAxisType;
/** \returns the \c x coefficient */
inline Scalar x() const { return this->derived().coeffs().coeff(0); }
/** \returns the \c y coefficient */
inline Scalar y() const { return this->derived().coeffs().coeff(1); }
/** \returns the \c z coefficient */
inline Scalar z() const { return this->derived().coeffs().coeff(2); }
/** \returns the \c w coefficient */
inline Scalar w() const { return this->derived().coeffs().coeff(3); }
/** \returns a reference to the \c x coefficient */
inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
/** \returns a reference to the \c y coefficient */
inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
/** \returns a reference to the \c z coefficient */
inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
/** \returns a reference to the \c w coefficient */
inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
inline const VectorBlock<typename ei_traits<Derived>::Coefficients,3> vec() const { return this->derived().coeffs().template start<3>(); }
/** \returns a vector expression of the imaginary part (x,y,z) */
inline VectorBlock<typename ei_traits<Derived>::Coefficients,3> vec() { return this->derived().coeffs().template start<3>(); }
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
inline const typename ei_traits<Derived>::Coefficients& coeffs() const { return this->derived().coeffs(); }
/** \returns a vector expression of the coefficients (x,y,z,w) */
inline typename ei_traits<Derived>::Coefficients& coeffs() { return this->derived().coeffs(); }
template<class OtherDerived> QuaternionBase& operator=(const QuaternionBase<OtherDerived>& other);
QuaternionBase& operator=(const AngleAxisType& aa);
template<class OtherDerived>
QuaternionBase& operator=(const MatrixBase<OtherDerived>& m);
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::Identity()
*/
inline static Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
/** \sa Quaternion2::Identity(), MatrixBase::setIdentity()
*/
inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
/** \returns the squared norm of the quaternion's coefficients
* \sa Quaternion2::norm(), MatrixBase::squaredNorm()
*/
inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
/** \returns the norm of the quaternion's coefficients
* \sa Quaternion2::squaredNorm(), MatrixBase::norm()
*/
inline Scalar norm() const { return coeffs().norm(); }
/** Normalizes the quaternion \c *this
* \sa normalized(), MatrixBase::normalize() */
inline void normalize() { coeffs().normalize(); }
/** \returns a normalized version of \c *this
* \sa normalize(), MatrixBase::normalized() */
inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
/** \returns the dot product of \c *this and \a other
* Geometrically speaking, the dot product of two unit quaternions
* corresponds to the cosine of half the angle between the two rotations.
* \sa angularDistance()
*/
template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
template<class OtherDerived> inline Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
Matrix3 toRotationMatrix(void) const;
template<typename Derived1, typename Derived2>
QuaternionBase& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
template<class OtherDerived> inline Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
template<class OtherDerived> inline QuaternionBase& operator*= (const QuaternionBase<OtherDerived>& q);
Quaternion<Scalar> inverse(void) const;
Quaternion<Scalar> conjugate(void) const;
template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const QuaternionBase& other, RealScalar prec = precision<Scalar>()) const
{ return coeffs().isApprox(other.coeffs(), prec); }
Vector3 _transformVector(Vector3 v) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
{
return typename ei_cast_return_type<Derived,Quaternion<NewScalarType> >::type(
coeffs().template cast<NewScalarType>());
}
};
template<typename _Scalar>
struct ei_traits<Quaternion<_Scalar> >
{
typedef _Scalar Scalar;
typedef Matrix<_Scalar,4,1> Coefficients;
enum{
PacketAccess = Aligned
PacketAccess = Aligned
};
};
@ -239,7 +249,7 @@ public:
explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
/** Copy constructor with scalar type conversion */
template<class Derived>
template<typename Derived>
inline explicit Quaternion(const QuaternionBase<Derived>& other)
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
@ -250,16 +260,29 @@ protected:
Coefficients m_coeffs;
};
/* ########### Map<Quaternion> */
/** \ingroup Geometry_Module
* single precision quaternion type */
typedef Quaternion<float> Quaternionf;
/** \ingroup Geometry_Module
* double precision quaternion type */
typedef Quaternion<double> Quaterniond;
/***************************************************************************
* Specialization of Map<Quaternion<Scalar>>
***************************************************************************/
/** \class Map<Quaternion>
* \nonstableyet
*
* \brief Expression of a quaternion
* \brief Expression of a quaternion from a memory buffer
*
* \param Scalar the type of the vector of diagonal coefficients
* \param _Scalar the type of the Quaternion coefficients
* \param PacketAccess see class Map
*
* \sa class Quaternion, class QuaternionBase
* This is a specialization of class Map for Quaternion. This class allows to view
* a 4 scalar memory buffer as an Eigen's Quaternion object.
*
* \sa class Map, class Quaternion, class QuaternionBase
*/
template<typename _Scalar, int _PacketAccess>
struct ei_traits<Map<Quaternion<_Scalar>, _PacketAccess> >:
@ -273,15 +296,23 @@ ei_traits<Quaternion<_Scalar> >
};
template<typename _Scalar, int PacketAccess>
class Map<Quaternion<_Scalar>, PacketAccess > : public QuaternionBase<Map<Quaternion<_Scalar>, PacketAccess> >, ei_no_assignment_operator {
class Map<Quaternion<_Scalar>, PacketAccess >
: public QuaternionBase<Map<Quaternion<_Scalar>, PacketAccess> >,
ei_no_assignment_operator
{
public:
typedef _Scalar Scalar;
typedef typename ei_traits<Map>::Coefficients Coefficients;
typedef typename ei_traits<Map<Quaternion<Scalar>, PacketAccess> >::Coefficients Coefficients;
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
*
* The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template paramter PacketAccess is set to Aligned, then the pointer coeffs must be aligned. */
inline Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
inline Map<Quaternion<Scalar>, PacketAccess >(const Scalar* coeffs) : m_coeffs(coeffs) {}
inline Coefficients& coeffs() { return m_coeffs;}
inline const Coefficients& coeffs() const { return m_coeffs;}
@ -289,15 +320,20 @@ class Map<Quaternion<_Scalar>, PacketAccess > : public QuaternionBase<Map<Quater
Coefficients m_coeffs;
};
typedef Map<Quaternion<double> > QuaternionMapd;
typedef Map<Quaternion<float> > QuaternionMapf;
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
typedef Map<Quaternion<double> > QuaternionMapd;
typedef Map<Quaternion<float> > QuaternionMapf;
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
/***************************************************************************
* Implementation of QuaternionBase methods
***************************************************************************/
// Generic Quaternion * Quaternion product
template<int Arch, class Derived, class OtherDerived, typename Scalar, int PacketAccess> struct ei_quat_product
// This product can be specialized for a given architecture via the Arch template argument.
template<int Arch, class Derived1, class Derived2, typename Scalar, int PacketAccess> struct ei_quat_product
{
inline static Quaternion<Scalar> run(const QuaternionBase<Derived>& a, const QuaternionBase<OtherDerived>& b){
inline static Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
return Quaternion<Scalar>
(
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
@ -311,21 +347,22 @@ template<int Arch, class Derived, class OtherDerived, typename Scalar, int Packe
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <class Derived>
template <class OtherDerived>
inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
inline Quaternion<typename ei_traits<Derived>::Scalar>
QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename OtherDerived::Scalar>::ret),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
return ei_quat_product<EiArch, Derived, OtherDerived,
typename ei_traits<Derived>::Scalar,
ei_traits<Derived>::PacketAccess && ei_traits<OtherDerived>::PacketAccess>::run(*this, other);
return ei_quat_product<EiArch, Derived, OtherDerived,
typename ei_traits<Derived>::Scalar,
ei_traits<Derived>::PacketAccess && ei_traits<OtherDerived>::PacketAccess>::run(*this, other);
}
/** \sa operator*(Quaternion) */
template <class Derived>
template <class OtherDerived>
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
inline Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
{
return (*this = *this * other);
return (derived() = derived() * other.derived());
}
/** Rotation of a vector by a quaternion.
@ -350,21 +387,21 @@ QuaternionBase<Derived>::_transformVector(Vector3 v) const
template<class Derived>
template<class OtherDerived>
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
inline Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
{
coeffs() = other.coeffs();
return *this;
return derived();
}
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
*/
template<class Derived>
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
inline Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
{
Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
this->w() = ei_cos(ha);
this->vec() = ei_sin(ha) * aa.axis();
return *this;
return derived();
}
/** Set \c *this from the expression \a xpr:
@ -375,12 +412,12 @@ inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const AngleAx
template<class Derived>
template<class MatrixDerived>
inline QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
{
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename MatrixDerived::Scalar>::ret),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
ei_quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
return *this;
return derived();
}
/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
@ -434,7 +471,7 @@ QuaternionBase<Derived>::toRotationMatrix(void) const
*/
template<class Derived>
template<typename Derived1, typename Derived2>
inline QuaternionBase<Derived>& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
Vector3 v0 = a.normalized();
Vector3 v1 = b.normalized();
@ -458,7 +495,7 @@ inline QuaternionBase<Derived>& QuaternionBase<Derived>::setFromTwoVectors(const
Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
this->w() = ei_sqrt(w2);
this->vec() = axis * ei_sqrt(Scalar(1) - w2);
return *this;
return derived();
}
Vector3 axis = v0.cross(v1);
Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
@ -466,17 +503,17 @@ inline QuaternionBase<Derived>& QuaternionBase<Derived>::setFromTwoVectors(const
this->vec() = axis * invs;
this->w() = s * Scalar(0.5);
return *this;
return derived();
}
/** \returns the multiplicative inverse of \c *this
* Note that in most cases, i.e., if you simply want the opposite rotation,
* and/or the quaternion is normalized, then it is enough to use the conjugate.
*
* \sa Quaternion2::conjugate()
* \sa QuaternionBase::conjugate()
*/
template <class Derived>
inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::inverse() const
inline Quaternion<typename ei_traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
{
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
Scalar n2 = this->squaredNorm();
@ -485,7 +522,7 @@ inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> Quaterni
else
{
// return an invalid result to flag the error
return Quaternion<Scalar>(ei_traits<Derived>::Coefficients::Zero());
return Quaternion<Scalar>(Coefficients::Zero());
}
}
@ -496,7 +533,8 @@ inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> Quaterni
* \sa Quaternion2::inverse()
*/
template <class Derived>
inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::conjugate() const
inline Quaternion<typename ei_traits<Derived>::Scalar>
QuaternionBase<Derived>::conjugate() const
{
return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
}
@ -506,11 +544,12 @@ inline Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> Quaterni
*/
template <class Derived>
template <class OtherDerived>
inline typename ei_traits<QuaternionBase<Derived> >::Scalar QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
inline typename ei_traits<Derived>::Scalar
QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
{
double d = ei_abs(this->dot(other));
if (d>=1.0)
return 0;
return Scalar(0);
return Scalar(2) * std::acos(d);
}
@ -519,13 +558,14 @@ inline typename ei_traits<QuaternionBase<Derived> >::Scalar QuaternionBase<Deriv
*/
template <class Derived>
template <class OtherDerived>
Quaternion<typename ei_traits<QuaternionBase<Derived> >::Scalar> QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
Quaternion<typename ei_traits<Derived>::Scalar>
QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
{
static const Scalar one = Scalar(1) - precision<Scalar>();
Scalar d = this->dot(other);
Scalar absD = ei_abs(d);
if (absD>=one)
return Quaternion<Scalar>(*this);
return Quaternion<Scalar>(derived());
// theta is the angle between the 2 quaternions
Scalar theta = std::acos(absD);
@ -549,7 +589,7 @@ struct ei_quaternionbase_assign_impl<Other,3,3>
// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
Scalar t = mat.trace();
if (t > 0)
if (t > Scalar(0))
{
t = ei_sqrt(t + Scalar(1.0));
q.w() = Scalar(0.5)*t;

View File

@ -436,14 +436,13 @@ struct ei_solve_retval<SVD<_MatrixType>, Rhs>
template<typename Dest> void evalTo(Dest& dst) const
{
const int cols = this->cols();
ei_assert(rhs().rows() == dec().rows());
for (int j=0; j<cols; ++j)
for (int j=0; j<cols(); ++j)
{
Matrix<Scalar,MatrixType::RowsAtCompileTime,1> aux = dec().matrixU().adjoint() * rhs().col(j);
for (int i = 0; i <dec().rows(); ++i)
for (int i = 0; i < dec().rows(); ++i)
{
Scalar si = dec().singularValues().coeff(i);
if(si == RealScalar(0))
@ -451,8 +450,10 @@ struct ei_solve_retval<SVD<_MatrixType>, Rhs>
else
aux.coeffRef(i) /= si;
}
dst.col(j) = dec().matrixV() * aux;
const int minsize = std::min(dec().rows(),dec().cols());
dst.col(j).start(minsize) = aux.start(minsize);
if(dec().cols()>dec().rows()) dst.col(j).end(cols()-minsize).setZero();
dst.col(j) = dec().matrixV() * dst.col(j);
}
}
};

View File

@ -126,6 +126,7 @@ class SparseLLT<MatrixType,Cholmod> : public SparseLLT<MatrixType>
typedef SparseLLT<MatrixType> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
typedef typename Base::CholMatrixType CholMatrixType;
using Base::MatrixLIsDirty;
using Base::SupernodalFactorIsDirty;
using Base::m_flags;
@ -154,7 +155,7 @@ class SparseLLT<MatrixType,Cholmod> : public SparseLLT<MatrixType>
cholmod_finish(&m_cholmod);
}
inline const typename Base::CholMatrixType& matrixL(void) const;
inline const CholMatrixType& matrixL() const;
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &b) const;
@ -198,7 +199,7 @@ void SparseLLT<MatrixType,Cholmod>::compute(const MatrixType& a)
}
template<typename MatrixType>
inline const typename SparseLLT<MatrixType>::CholMatrixType&
inline const typename SparseLLT<MatrixType,Cholmod>::CholMatrixType&
SparseLLT<MatrixType,Cholmod>::matrixL() const
{
if (m_status & MatrixLIsDirty)

View File

@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@ -27,7 +27,7 @@
#define EIGEN_BENCH_TIMER_H
#ifndef WIN32
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
#else
#define NOMINMAX
@ -41,6 +41,11 @@ namespace Eigen
{
/** Elapsed time timer keeping the best try.
*
* On POSIX platforms we use clock_gettime with CLOCK_PROCESS_CPUTIME_ID.
* On Windows we use QueryPerformanceCounter
*
* Important: on linux, you must link with -lrt
*/
class BenchTimer
{
@ -83,10 +88,9 @@ public:
QueryPerformanceCounter(&query_ticks);
return query_ticks.QuadPart/m_frequency;
#else
struct timeval tv;
struct timezone tz;
gettimeofday(&tv, &tz);
return (double)tv.tv_sec + 1.e-6 * (double)tv.tv_usec;
timespec ts;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
return double(ts.tv_sec) + 1e-9 * double(ts.tv_nsec);
#endif
}

View File

@ -178,13 +178,13 @@ using namespace Eigen;
void bench_eigengemm(MyMatrix& mc, const MyMatrix& ma, const MyMatrix& mb, int nbloops)
{
for (uint j=0 ; j<nbloops ; ++j)
mc += (ma * mb).lazy();
mc.noalias() += ma * mb;
}
void bench_eigengemm_normal(MyMatrix& mc, const MyMatrix& ma, const MyMatrix& mb, int nbloops)
{
for (uint j=0 ; j<nbloops ; ++j)
mc += Product<MyMatrix,MyMatrix,NormalProduct>(ma,mb).lazy();
mc.noalias() += GeneralProduct<MyMatrix,MyMatrix,UnrolledProduct>(ma,mb);
}
#define MYVERIFY(A,M) if (!(A)) { \

View File

@ -22,13 +22,10 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include <bench/BenchUtil.h>
#include <complex>
#include <vector>
#include <Eigen/Core>
#include <bench/BenchTimer.h>
#ifdef USE_FFTW
#include <fftw3.h>
#endif
#include <unsupported/Eigen/FFT>

View File

@ -278,18 +278,24 @@ Of course, fixed-size matrices can't be resized.
\subsection TutorialMap Map
Any memory buffer can be mapped as an Eigen expression:
<table class="tutorial_code"><tr><td>
Any memory buffer can be mapped as an Eigen expression using the Map() static method:
\code
std::vector<float> stlarray(10);
Map<VectorXf>(&stlarray[0], stlarray.size()).setOnes();
int data[4] = 1, 2, 3, 4;
Matrix2i mat2x2(data);
MatrixXi mat2x2 = Map<Matrix2i>(data);
MatrixXi mat2x2 = Map<MatrixXi>(data,2,2);
VectorXf::Map(&stlarray[0], stlarray.size()).squaredNorm();
\endcode
Here VectorXf::Map returns an object of class Map<VectorXf>, which behaves like a VectorXf except that it uses the existing array. You can write to this object, that will write to the existing array. You can also construct a named obtect to reuse it:
\code
float array[rows*cols];
Map<MatrixXf> m(array,rows,cols);
m = othermatrix1 * othermatrix2;
m.eigenvalues();
\endcode
In the fixed-size case, no need to pass sizes:
\code
float array[9];
Map<Matrix3d> m(array);
Matrix3d::Map(array).setIdentity();
\endcode
</td></tr></table>
\subsection TutorialCommaInit Comma initializer

View File

@ -49,6 +49,10 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
ComplexEigenSolver<MatrixType> ei1(a);
VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
// Regression test for issue #66
MatrixType z = MatrixType::Zero(rows,cols);
ComplexEigenSolver<MatrixType> eiz(z);
VERIFY((eiz.eigenvalues().cwise()==0).all());
}
void test_eigensolver_complex()
@ -58,4 +62,3 @@ void test_eigensolver_complex()
CALL_SUBTEST_2( eigensolver(MatrixXcd(14,14)) );
}
}

View File

@ -109,7 +109,7 @@ template<typename Scalar> void sparse_solvers(int rows, int cols)
initSPD(density, refMat2, m2);
refMat2.llt().solve(b, &refX);
refX = refMat2.llt().solve(b);
typedef SparseMatrix<Scalar,LowerTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
if (!NumTraits<Scalar>::IsComplex)
{
@ -152,7 +152,7 @@ template<typename Scalar> void sparse_solvers(int rows, int cols)
refMat2 += refMat2.adjoint();
refMat2.diagonal() *= 0.5;
refMat2.llt().solve(b, &refX); // FIXME use LLT to compute the reference because LDLT seems to fail with large matrices
refX = refMat2.llt().solve(b); // FIXME use LLT to compute the reference because LDLT seems to fail with large matrices
typedef SparseMatrix<Scalar,UpperTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
x = b;
SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);

View File

@ -33,14 +33,26 @@
namespace Eigen {
template <typename _NativePtr,typename _PunnedPtr>
template <typename _NativeData,typename _PunnedData>
struct castable_pointer
{
castable_pointer(_NativePtr ptr) : _ptr(ptr) {}
operator _NativePtr () {return _ptr;}
operator _PunnedPtr () {return reinterpret_cast<_PunnedPtr>(_ptr);}
castable_pointer(_NativeData * ptr) : _ptr(ptr) { }
operator _NativeData * () {return _ptr;}
operator _PunnedData * () {return reinterpret_cast<_PunnedData*>(_ptr);}
operator const _NativeData * () const {return _ptr;}
operator const _PunnedData * () const {return reinterpret_cast<_PunnedData*>(_ptr);}
private:
_NativePtr _ptr;
_NativeData * _ptr;
};
template <typename _NativeData,typename _PunnedData>
struct const_castable_pointer
{
const_castable_pointer(_NativeData * ptr) : _ptr(ptr) { }
operator const _NativeData * () const {return _ptr;}
operator const _PunnedData * () const {return reinterpret_cast<_PunnedData*>(_ptr);}
private:
_NativeData * _ptr;
};
template <typename T>
@ -50,7 +62,8 @@ struct Complex
typedef T value_type;
// constructors
Complex(const T& re = T(), const T& im = T()) : _re(re),_im(im) { }
Complex() {}
Complex(const T& re, const T& im = T()) : _re(re),_im(im) { }
Complex(const Complex&other ): _re(other.real()) ,_im(other.imag()) {}
template<class X>
@ -58,40 +71,63 @@ struct Complex
template<class X>
Complex(const std::complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
// allow binary access to the object as a std::complex
typedef castable_pointer< Complex<T>*, StandardComplex* > pointer_type;
typedef castable_pointer< const Complex<T>*, const StandardComplex* > const_pointer_type;
typedef castable_pointer< Complex<T>, StandardComplex > pointer_type;
typedef const_castable_pointer< Complex<T>, StandardComplex > const_pointer_type;
inline
pointer_type operator & () {return pointer_type(this);}
inline
const_pointer_type operator & () const {return const_pointer_type(this);}
inline
operator StandardComplex () const {return std_type();}
inline
operator StandardComplex & () {return std_type();}
StandardComplex std_type() const {return StandardComplex(real(),imag());}
inline
const StandardComplex & std_type() const {return *reinterpret_cast<const StandardComplex*>(this);}
inline
StandardComplex & std_type() {return *reinterpret_cast<StandardComplex*>(this);}
// every sort of accessor and mutator that has ever been in fashion.
// For a brief history, search for "std::complex over-encapsulated"
// http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#387
inline
const T & real() const {return _re;}
inline
const T & imag() const {return _im;}
inline
T & real() {return _re;}
inline
T & imag() {return _im;}
inline
T & real(const T & x) {return _re=x;}
inline
T & imag(const T & x) {return _im=x;}
inline
void set_real(const T & x) {_re = x;}
inline
void set_imag(const T & x) {_im = x;}
// *** complex member functions: ***
inline
Complex<T>& operator= (const T& val) { _re=val;_im=0;return *this; }
inline
Complex<T>& operator+= (const T& val) {_re+=val;return *this;}
inline
Complex<T>& operator-= (const T& val) {_re-=val;return *this;}
inline
Complex<T>& operator*= (const T& val) {_re*=val;_im*=val;return *this; }
inline
Complex<T>& operator/= (const T& val) {_re/=val;_im/=val;return *this; }
inline
Complex& operator= (const Complex& rhs) {_re=rhs._re;_im=rhs._im;return *this;}
inline
Complex& operator= (const StandardComplex& rhs) {_re=rhs.real();_im=rhs.imag();return *this;}
template<class X> Complex<T>& operator= (const Complex<X>& rhs) { _re=rhs._re;_im=rhs._im;return *this;}
@ -105,8 +141,7 @@ struct Complex
T _im;
};
template <typename T>
T ei_to_std( const T & x) {return x;}
//template <typename T> T ei_to_std( const T & x) {return x;}
template <typename T>
std::complex<T> ei_to_std( const Complex<T> & x) {return x.std_type();}
@ -165,7 +200,7 @@ operator<< (std::basic_ostream<charT,traits>& ostr, const Complex<T>& rhs)
template<class T> Complex<T> log (const Complex<T>&x){return log(ei_to_std(x));}
template<class T> Complex<T> log10 (const Complex<T>&x){return log10(ei_to_std(x));}
template<class T> Complex<T> pow(const Complex<T>&x, int p) {return pow(ei_to_std(x),ei_to_std(p));}
template<class T> Complex<T> pow(const Complex<T>&x, int p) {return pow(ei_to_std(x),p);}
template<class T> Complex<T> pow(const Complex<T>&x, const T&p) {return pow(ei_to_std(x),ei_to_std(p));}
template<class T> Complex<T> pow(const Complex<T>&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
template<class T> Complex<T> pow(const T&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
@ -175,8 +210,20 @@ operator<< (std::basic_ostream<charT,traits>& ostr, const Complex<T>& rhs)
template<class T> Complex<T> sqrt (const Complex<T>&x){return sqrt(ei_to_std(x));}
template<class T> Complex<T> tan (const Complex<T>&x){return tan(ei_to_std(x));}
template<class T> Complex<T> tanh (const Complex<T>&x){return tanh(ei_to_std(x));}
}
template<typename _Real> struct NumTraits<Complex<_Real> >
{
typedef _Real Real;
typedef Complex<_Real> FloatingPoint;
enum {
IsComplex = 1,
HasFloatingPoint = NumTraits<Real>::HasFloatingPoint,
ReadCost = 2,
AddCost = 2 * NumTraits<Real>::AddCost,
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
};
};
}
#endif
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -28,6 +28,7 @@
#include <complex>
#include <vector>
#include <map>
#include <Eigen/Core>
#ifdef EIGEN_FFTW_DEFAULT
// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
@ -65,49 +66,87 @@ class FFT
typedef typename impl_type::Scalar Scalar;
typedef typename impl_type::Complex Complex;
FFT(const impl_type & impl=impl_type() ) :m_impl(impl) { }
enum Flag {
Default=0, // goof proof
Unscaled=1,
HalfSpectrum=2,
// SomeOtherSpeedOptimization=4
Speedy=32767
};
template <typename _Input>
void fwd( Complex * dst, const _Input * src, int nfft)
FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { }
inline
bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;}
inline
void SetFlag(Flag f) { m_flag |= (int)f;}
inline
void ClearFlag(Flag f) { m_flag &= (~(int)f);}
inline
void fwd( Complex * dst, const Scalar * src, int nfft)
{
m_impl.fwd(dst,src,nfft);
if ( HasFlag(HalfSpectrum) == false)
ReflectSpectrum(dst,nfft);
}
inline
void fwd( Complex * dst, const Complex * src, int nfft)
{
m_impl.fwd(dst,src,nfft);
}
template <typename _Input>
inline
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
{
dst.resize( src.size() );
fwd( &dst[0],&src[0],src.size() );
if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
dst.resize( (src.size()>>1)+1);
else
dst.resize(src.size());
fwd(&dst[0],&src[0],src.size());
}
template<typename InputDerived, typename ComplexDerived>
inline
void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
EIGEN_STATIC_ASSERT((ei_is_same_type<typename ComplexDerived::Scalar, Complex>::ret),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
dst.derived().resize( src.size() );
fwd( &dst[0],&src[0],src.size() );
EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
EIGEN_STATIC_ASSERT((ei_is_same_type<typename ComplexDerived::Scalar, Complex>::ret),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
if ( NumTraits< typename InputDerived::Scalar >::IsComplex == 0 && HasFlag(HalfSpectrum) )
dst.derived().resize( (src.size()>>1)+1);
else
dst.derived().resize(src.size());
fwd( &dst[0],&src[0],src.size() );
}
template <typename _Output>
void inv( _Output * dst, const Complex * src, int nfft)
inline
void inv( Complex * dst, const Complex * src, int nfft)
{
m_impl.inv( dst,src,nfft );
if ( HasFlag( Unscaled ) == false)
scale(dst,1./nfft,nfft);
}
template <typename _Output>
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
inline
void inv( Scalar * dst, const Complex * src, int nfft)
{
dst.resize( src.size() );
inv( &dst[0],&src[0],src.size() );
m_impl.inv( dst,src,nfft );
if ( HasFlag( Unscaled ) == false)
scale(dst,1./nfft,nfft);
}
template<typename OutputDerived, typename ComplexDerived>
inline
void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
@ -117,18 +156,52 @@ class FFT
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
dst.derived().resize( src.size() );
int nfft = src.size();
int nout = HasFlag(HalfSpectrum) ? ((nfft>>1)+1) : nfft;
dst.derived().resize( nout );
inv( &dst[0],&src[0],src.size() );
}
template <typename _Output>
inline
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
{
if ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) )
dst.resize( 2*(src.size()-1) );
else
dst.resize( src.size() );
inv( &dst[0],&src[0],dst.size() );
}
// TODO: multi-dimensional FFTs
// TODO: handle Eigen MatrixBase
// ---> i added fwd and inv specializations above + unit test, is this enough? (bjacob)
inline
impl_type & impl() {return m_impl;}
private:
template <typename _It,typename _Val>
inline
void scale(_It x,_Val s,int nx)
{
for (int k=0;k<nx;++k)
*x++ *= s;
}
inline
void ReflectSpectrum(Complex * freq,int nfft)
{
// create the implicit right-half spectrum (conjugate-mirror of the left-half)
int nhbins=(nfft>>1)+1;
for (int k=nhbins;k < nfft; ++k )
freq[k] = conj(freq[nfft-k]);
}
impl_type m_impl;
int m_flag;
};
}
#endif

View File

@ -29,7 +29,7 @@ namespace Eigen {
template<typename A, typename B>
struct ei_make_coherent_impl {
static void run(A& a, B& b) {}
static void run(A&, B&) {}
};
// resize a to match b is a.size()==0, and conversely.

View File

@ -35,7 +35,7 @@ namespace Eigen {
* This class represents a scalar value while tracking its respective derivatives.
*
* It supports the following list of global math function:
* - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
* - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
* - ei_abs, ei_sqrt, ei_pow, ei_exp, ei_log, ei_sin, ei_cos,
* - ei_conj, ei_real, ei_imag, ei_abs2.
*
@ -48,130 +48,150 @@ template<typename ValueType, typename JacobianType>
class AutoDiffVector
{
public:
typedef typename ei_traits<ValueType>::Scalar Scalar;
//typedef typename ei_traits<ValueType>::Scalar Scalar;
typedef typename ei_traits<ValueType>::Scalar BaseScalar;
typedef AutoDiffScalar<Matrix<BaseScalar,JacobianType::RowsAtCompileTime,1> > ActiveScalar;
typedef ActiveScalar Scalar;
typedef AutoDiffScalar<typename JacobianType::ColXpr> CoeffType;
inline AutoDiffVector() {}
inline AutoDiffVector(const ValueType& values)
: m_values(values)
{
m_jacobian.setZero();
}
CoeffType operator[] (int i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
const CoeffType operator[] (int i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
CoeffType operator() (int i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
const CoeffType operator() (int i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
CoeffType coeffRef(int i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
const CoeffType coeffRef(int i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
int size() const { return m_values.size(); }
// FIXME here we could return an expression of the sum
Scalar sum() const { /*std::cerr << "sum \n\n";*/ /*std::cerr << m_jacobian.rowwise().sum() << "\n\n";*/ return Scalar(m_values.sum(), m_jacobian.rowwise().sum()); }
inline AutoDiffVector(const ValueType& values, const JacobianType& jac)
: m_values(values), m_jacobian(jac)
{}
template<typename OtherValueType, typename OtherJacobianType>
inline AutoDiffVector(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
: m_values(other.values()), m_jacobian(other.jacobian())
{}
inline AutoDiffVector(const AutoDiffVector& other)
: m_values(other.values()), m_jacobian(other.jacobian())
{}
template<typename OtherValueType, typename OtherJacobianType>
inline AutoDiffScalar& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
inline AutoDiffVector& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
{
m_values = other.values();
m_jacobian = other.jacobian();
return *this;
}
inline AutoDiffVector& operator=(const AutoDiffVector& other)
{
m_values = other.values();
m_jacobian = other.jacobian();
return *this;
}
inline const ValueType& values() const { return m_values; }
inline ValueType& values() { return m_values; }
inline const JacobianType& jacobian() const { return m_jacobian; }
inline JacobianType& jacobian() { return m_jacobian; }
template<typename OtherValueType,typename OtherJacobianType>
inline const AutoDiffVector<
CwiseBinaryOp<ei_scalar_sum_op<Scalar>,ValueType,OtherValueType> >
CwiseBinaryOp<ei_scalar_sum_op<Scalar>,JacobianType,OtherJacobianType> >
operator+(const AutoDiffScalar<OtherDerType>& other) const
typename MakeCwiseBinaryOp<ei_scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
typename MakeCwiseBinaryOp<ei_scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >
operator+(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
{
return AutoDiffVector<
CwiseBinaryOp<ei_scalar_sum_op<Scalar>,ValueType,OtherValueType> >
CwiseBinaryOp<ei_scalar_sum_op<Scalar>,JacobianType,OtherJacobianType> >(
typename MakeCwiseBinaryOp<ei_scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
typename MakeCwiseBinaryOp<ei_scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >(
m_values + other.values(),
m_jacobian + other.jacobian());
}
template<typename OtherValueType, typename OtherJacobianType>
inline AutoDiffVector&
operator+=(const AutoDiffVector<OtherValueType,OtherDerType>& other)
operator+=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
{
m_values += other.values();
m_jacobian += other.jacobian();
return *this;
}
template<typename OtherValueType,typename OtherJacobianType>
inline const AutoDiffVector<
CwiseBinaryOp<ei_scalar_difference_op<Scalar>,ValueType,OtherValueType> >
CwiseBinaryOp<ei_scalar_difference_op<Scalar>,JacobianType,OtherJacobianType> >
operator-(const AutoDiffScalar<OtherDerType>& other) const
typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >
operator-(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
{
return AutoDiffVector<
CwiseBinaryOp<ei_scalar_difference_op<Scalar>,ValueType,OtherValueType> >
CwiseBinaryOp<ei_scalar_difference_op<Scalar>,JacobianType,OtherJacobianType> >(
m_values - other.values(),
m_jacobian - other.jacobian());
typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >(
m_values - other.values(),
m_jacobian - other.jacobian());
}
template<typename OtherValueType, typename OtherJacobianType>
inline AutoDiffVector&
operator-=(const AutoDiffVector<OtherValueType,OtherDerType>& other)
operator-=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
{
m_values -= other.values();
m_jacobian -= other.jacobian();
return *this;
}
inline const AutoDiffVector<
CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, ValueType>
CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, JacobianType> >
typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, ValueType>::Type,
typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, JacobianType>::Type >
operator-() const
{
return AutoDiffVector<
CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, ValueType>
CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, JacobianType> >(
-m_values,
-m_jacobian);
typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, ValueType>::Type,
typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, JacobianType>::Type >(
-m_values,
-m_jacobian);
}
inline const AutoDiffVector<
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >
operator*(const Scalar& other) const
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>::Type,
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>::Type>
operator*(const BaseScalar& other) const
{
return AutoDiffVector<
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >(
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>::Type,
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>::Type >(
m_values * other,
(m_jacobian * other));
m_jacobian * other);
}
friend inline const AutoDiffVector<
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>::Type,
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>::Type >
operator*(const Scalar& other, const AutoDiffVector& v)
{
return AutoDiffVector<
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>
CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >(
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>::Type,
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>::Type >(
v.values() * other,
v.jacobian() * other);
}
// template<typename OtherValueType,typename OtherJacobianType>
// inline const AutoDiffVector<
// CwiseBinaryOp<ei_scalar_multiple_op<Scalar>, ValueType, OtherValueType>
@ -188,25 +208,25 @@ class AutoDiffVector
// m_values.cwise() * other.values(),
// (m_jacobian * other.values()).nestByValue() + (m_values * other.jacobian()).nestByValue());
// }
inline AutoDiffVector& operator*=(const Scalar& other)
{
m_values *= other;
m_jacobian *= other;
return *this;
}
template<typename OtherValueType,typename OtherJacobianType>
inline AutoDiffVector& operator*=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
{
*this = *this * other;
return *this;
}
protected:
ValueType m_values;
JacobianType m_jacobian;
};
}

View File

@ -166,6 +166,7 @@
m_plans.clear();
}
// complex-to-complex forward FFT
inline
void fwd( Complex * dst,const Complex *src,int nfft)
{
@ -177,9 +178,6 @@
void fwd( Complex * dst,const Scalar * src,int nfft)
{
get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src) ,nfft);
int nhbins=(nfft>>1)+1;
for (int k=nhbins;k < nfft; ++k )
dst[k] = conj(dst[nfft-k]);
}
// inverse complex-to-complex
@ -187,12 +185,6 @@
void inv(Complex * dst,const Complex *src,int nfft)
{
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
//TODO move scaling to Eigen::FFT
// scaling
Scalar s = Scalar(1.)/nfft;
for (int k=0;k<nfft;++k)
dst[k] *= s;
}
// half-complex to scalar
@ -200,11 +192,6 @@
void inv( Scalar * dst,const Complex * src,int nfft)
{
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
//TODO move scaling to Eigen::FFT
Scalar s = Scalar(1.)/nfft;
for (int k=0;k<nfft;++k)
dst[k] *= s;
}
protected:
@ -222,3 +209,5 @@
return m_plans[key];
}
};
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -27,388 +27,384 @@
// This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
// Copyright 2003-2009 Mark Borgerding
template <typename _Scalar>
struct ei_kiss_cpx_fft
template <typename _Scalar>
struct ei_kiss_cpx_fft
{
typedef _Scalar Scalar;
typedef std::complex<Scalar> Complex;
std::vector<Complex> m_twiddles;
std::vector<int> m_stageRadix;
std::vector<int> m_stageRemainder;
std::vector<Complex> m_scratchBuf;
bool m_inverse;
inline
void make_twiddles(int nfft,bool inverse)
{
typedef _Scalar Scalar;
typedef std::complex<Scalar> Complex;
std::vector<Complex> m_twiddles;
std::vector<int> m_stageRadix;
std::vector<int> m_stageRemainder;
std::vector<Complex> m_scratchBuf;
bool m_inverse;
m_inverse = inverse;
m_twiddles.resize(nfft);
Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
for (int i=0;i<nfft;++i)
m_twiddles[i] = exp( Complex(0,i*phinc) );
}
void make_twiddles(int nfft,bool inverse)
{
m_inverse = inverse;
m_twiddles.resize(nfft);
Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
for (int i=0;i<nfft;++i)
m_twiddles[i] = exp( Complex(0,i*phinc) );
}
void factorize(int nfft)
{
//start factoring out 4's, then 2's, then 3,5,7,9,...
int n= nfft;
int p=4;
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p*p>n)
p=n;// impossible to have a factor > sqrt(n)
}
n /= p;
m_stageRadix.push_back(p);
m_stageRemainder.push_back(n);
if ( p > 5 )
m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
}while(n>1);
}
template <typename _Src>
void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
{
int p = m_stageRadix[stage];
int m = m_stageRemainder[stage];
Complex * Fout_beg = xout;
Complex * Fout_end = xout + p*m;
if (m>1) {
do{
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
work(stage+1, xout , xin, fstride*p,in_stride);
xin += fstride*in_stride;
}while( (xout += m) != Fout_end );
}else{
do{
*xout = *xin;
xin += fstride*in_stride;
}while(++xout != Fout_end );
}
xout=Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2: bfly2(xout,fstride,m); break;
case 3: bfly3(xout,fstride,m); break;
case 4: bfly4(xout,fstride,m); break;
case 5: bfly5(xout,fstride,m); break;
default: bfly_generic(xout,fstride,m,p); break;
}
}
inline
void bfly2( Complex * Fout, const size_t fstride, int m)
{
for (int k=0;k<m;++k) {
Complex t = Fout[m+k] * m_twiddles[k*fstride];
Fout[m+k] = Fout[k] - t;
Fout[k] += t;
void factorize(int nfft)
{
//start factoring out 4's, then 2's, then 3,5,7,9,...
int n= nfft;
int p=4;
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p*p>n)
p=n;// impossible to have a factor > sqrt(n)
}
n /= p;
m_stageRadix.push_back(p);
m_stageRemainder.push_back(n);
if ( p > 5 )
m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
}while(n>1);
}
inline
void bfly4( Complex * Fout, const size_t fstride, const size_t m)
{
Complex scratch[6];
int negative_if_inverse = m_inverse * -2 +1;
for (size_t k=0;k<m;++k) {
scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
scratch[5] = Fout[k] - scratch[1];
Fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
Fout[k+2*m] = Fout[k] - scratch[3];
Fout[k] += scratch[3];
Fout[k+m] = scratch[5] + scratch[4];
Fout[k+3*m] = scratch[5] - scratch[4];
}
}
inline
void bfly3( Complex * Fout, const size_t fstride, const size_t m)
{
size_t k=m;
const size_t m2 = 2*m;
Complex *tw1,*tw2;
Complex scratch[5];
Complex epi3;
epi3 = m_twiddles[fstride*m];
tw1=tw2=&m_twiddles[0];
template <typename _Src>
inline
void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
{
int p = m_stageRadix[stage];
int m = m_stageRemainder[stage];
Complex * Fout_beg = xout;
Complex * Fout_end = xout + p*m;
if (m>1) {
do{
scratch[1]=Fout[m] * *tw1;
scratch[2]=Fout[m2] * *tw2;
scratch[3]=scratch[1]+scratch[2];
scratch[0]=scratch[1]-scratch[2];
tw1 += fstride;
tw2 += fstride*2;
Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
scratch[0] *= epi3.imag();
*Fout += scratch[3];
Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
++Fout;
}while(--k);
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
work(stage+1, xout , xin, fstride*p,in_stride);
xin += fstride*in_stride;
}while( (xout += m) != Fout_end );
}else{
do{
*xout = *xin;
xin += fstride*in_stride;
}while(++xout != Fout_end );
}
xout=Fout_beg;
inline
void bfly5( Complex * Fout, const size_t fstride, const size_t m)
{
Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
size_t u;
Complex scratch[13];
Complex * twiddles = &m_twiddles[0];
Complex *tw;
Complex ya,yb;
ya = twiddles[fstride*m];
yb = twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
Fout2=Fout0+2*m;
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
tw=twiddles;
for ( u=0; u<m; ++u ) {
scratch[0] = *Fout0;
scratch[1] = *Fout1 * tw[u*fstride];
scratch[2] = *Fout2 * tw[2*u*fstride];
scratch[3] = *Fout3 * tw[3*u*fstride];
scratch[4] = *Fout4 * tw[4*u*fstride];
scratch[7] = scratch[1] + scratch[4];
scratch[10] = scratch[1] - scratch[4];
scratch[8] = scratch[2] + scratch[3];
scratch[9] = scratch[2] - scratch[3];
*Fout0 += scratch[7];
*Fout0 += scratch[8];
scratch[5] = scratch[0] + Complex(
(scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
(scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
);
scratch[6] = Complex(
(scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
-(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
);
*Fout1 = scratch[5] - scratch[6];
*Fout4 = scratch[5] + scratch[6];
scratch[11] = scratch[0] +
Complex(
(scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
(scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
);
scratch[12] = Complex(
-(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
(scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
);
*Fout2=scratch[11]+scratch[12];
*Fout3=scratch[11]-scratch[12];
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
}
// recombine the p smaller DFTs
switch (p) {
case 2: bfly2(xout,fstride,m); break;
case 3: bfly3(xout,fstride,m); break;
case 4: bfly4(xout,fstride,m); break;
case 5: bfly5(xout,fstride,m); break;
default: bfly_generic(xout,fstride,m,p); break;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
inline
void bfly_generic(
Complex * Fout,
const size_t fstride,
int m,
int p
)
{
int u,k,q1,q;
Complex * twiddles = &m_twiddles[0];
Complex t;
int Norig = m_twiddles.size();
Complex * scratchbuf = &m_scratchBuf[0];
for ( u=0; u<m; ++u ) {
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
scratchbuf[q1] = Fout[ k ];
k += m;
}
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
int twidx=0;
Fout[ k ] = scratchbuf[0];
for (q=1;q<p;++q ) {
twidx += fstride * k;
if (twidx>=Norig) twidx-=Norig;
t=scratchbuf[q] * twiddles[twidx];
Fout[ k ] += t;
}
k += m;
}
}
}
};
template <typename _Scalar>
struct ei_kissfft_impl
inline
void bfly2( Complex * Fout, const size_t fstride, int m)
{
typedef _Scalar Scalar;
typedef std::complex<Scalar> Complex;
void clear()
{
m_plans.clear();
m_realTwiddles.clear();
for (int k=0;k<m;++k) {
Complex t = Fout[m+k] * m_twiddles[k*fstride];
Fout[m+k] = Fout[k] - t;
Fout[k] += t;
}
}
template <typename _Src>
inline
void fwd( Complex * dst,const _Src *src,int nfft)
{
get_plan(nfft,false).work(0, dst, src, 1,1);
inline
void bfly4( Complex * Fout, const size_t fstride, const size_t m)
{
Complex scratch[6];
int negative_if_inverse = m_inverse * -2 +1;
for (size_t k=0;k<m;++k) {
scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
scratch[5] = Fout[k] - scratch[1];
Fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
Fout[k+2*m] = Fout[k] - scratch[3];
Fout[k] += scratch[3];
Fout[k+m] = scratch[5] + scratch[4];
Fout[k+3*m] = scratch[5] - scratch[4];
}
}
inline
void bfly3( Complex * Fout, const size_t fstride, const size_t m)
{
size_t k=m;
const size_t m2 = 2*m;
Complex *tw1,*tw2;
Complex scratch[5];
Complex epi3;
epi3 = m_twiddles[fstride*m];
tw1=tw2=&m_twiddles[0];
do{
scratch[1]=Fout[m] * *tw1;
scratch[2]=Fout[m2] * *tw2;
scratch[3]=scratch[1]+scratch[2];
scratch[0]=scratch[1]-scratch[2];
tw1 += fstride;
tw2 += fstride*2;
Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
scratch[0] *= epi3.imag();
*Fout += scratch[3];
Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
++Fout;
}while(--k);
}
inline
void bfly5( Complex * Fout, const size_t fstride, const size_t m)
{
Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
size_t u;
Complex scratch[13];
Complex * twiddles = &m_twiddles[0];
Complex *tw;
Complex ya,yb;
ya = twiddles[fstride*m];
yb = twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
Fout2=Fout0+2*m;
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
tw=twiddles;
for ( u=0; u<m; ++u ) {
scratch[0] = *Fout0;
scratch[1] = *Fout1 * tw[u*fstride];
scratch[2] = *Fout2 * tw[2*u*fstride];
scratch[3] = *Fout3 * tw[3*u*fstride];
scratch[4] = *Fout4 * tw[4*u*fstride];
scratch[7] = scratch[1] + scratch[4];
scratch[10] = scratch[1] - scratch[4];
scratch[8] = scratch[2] + scratch[3];
scratch[9] = scratch[2] - scratch[3];
*Fout0 += scratch[7];
*Fout0 += scratch[8];
scratch[5] = scratch[0] + Complex(
(scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
(scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
);
scratch[6] = Complex(
(scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
-(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
);
*Fout1 = scratch[5] - scratch[6];
*Fout4 = scratch[5] + scratch[6];
scratch[11] = scratch[0] +
Complex(
(scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
(scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
);
scratch[12] = Complex(
-(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
(scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
);
*Fout2=scratch[11]+scratch[12];
*Fout3=scratch[11]-scratch[12];
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
inline
void bfly_generic(
Complex * Fout,
const size_t fstride,
int m,
int p
)
{
int u,k,q1,q;
Complex * twiddles = &m_twiddles[0];
Complex t;
int Norig = m_twiddles.size();
Complex * scratchbuf = &m_scratchBuf[0];
for ( u=0; u<m; ++u ) {
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
scratchbuf[q1] = Fout[ k ];
k += m;
}
// real-to-complex forward FFT
// perform two FFTs of src even and src odd
// then twiddle to recombine them into the half-spectrum format
// then fill in the conjugate symmetric half
inline
void fwd( Complex * dst,const Scalar * src,int nfft)
{
if ( nfft&3 ) {
// use generic mode for odd
get_plan(nfft,false).work(0, dst, src, 1,1);
}else{
int ncfft = nfft>>1;
int ncfft2 = nfft>>2;
Complex * rtw = real_twiddles(ncfft2);
// use optimized mode for even real
fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
Complex dc = dst[0].real() + dst[0].imag();
Complex nyquist = dst[0].real() - dst[0].imag();
int k;
for ( k=1;k <= ncfft2 ; ++k ) {
Complex fpk = dst[k];
Complex fpnk = conj(dst[ncfft-k]);
Complex f1k = fpk + fpnk;
Complex f2k = fpk - fpnk;
Complex tw= f2k * rtw[k-1];
dst[k] = (f1k + tw) * Scalar(.5);
dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
int twidx=0;
Fout[ k ] = scratchbuf[0];
for (q=1;q<p;++q ) {
twidx += fstride * k;
if (twidx>=Norig) twidx-=Norig;
t=scratchbuf[q] * twiddles[twidx];
Fout[ k ] += t;
}
// place conjugate-symmetric half at the end for completeness
// TODO: make this configurable ( opt-out )
for ( k=1;k < ncfft ; ++k )
dst[nfft-k] = conj(dst[k]);
dst[0] = dc;
dst[ncfft] = nyquist;
k += m;
}
}
}
};
// inverse complex-to-complex
inline
void inv(Complex * dst,const Complex *src,int nfft)
{
get_plan(nfft,true).work(0, dst, src, 1,1);
scale(dst, nfft, Scalar(1)/nfft );
}
template <typename _Scalar>
struct ei_kissfft_impl
{
typedef _Scalar Scalar;
typedef std::complex<Scalar> Complex;
// half-complex to scalar
inline
void inv( Scalar * dst,const Complex * src,int nfft)
{
if (nfft&3) {
m_tmpBuf.resize(nfft);
inv(&m_tmpBuf[0],src,nfft);
for (int k=0;k<nfft;++k)
dst[k] = m_tmpBuf[k].real();
}else{
// optimized version for multiple of 4
int ncfft = nfft>>1;
int ncfft2 = nfft>>2;
Complex * rtw = real_twiddles(ncfft2);
m_tmpBuf.resize(ncfft);
m_tmpBuf[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
for (int k = 1; k <= ncfft / 2; ++k) {
Complex fk = src[k];
Complex fnkc = conj(src[ncfft-k]);
Complex fek = fk + fnkc;
Complex tmp = fk - fnkc;
Complex fok = tmp * conj(rtw[k-1]);
m_tmpBuf[k] = fek + fok;
m_tmpBuf[ncfft-k] = conj(fek - fok);
}
scale(&m_tmpBuf[0], ncfft, Scalar(1)/nfft );
get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf[0], 1,1);
void clear()
{
m_plans.clear();
m_realTwiddles.clear();
}
inline
void fwd( Complex * dst,const Complex *src,int nfft)
{
get_plan(nfft,false).work(0, dst, src, 1,1);
}
// real-to-complex forward FFT
// perform two FFTs of src even and src odd
// then twiddle to recombine them into the half-spectrum format
// then fill in the conjugate symmetric half
inline
void fwd( Complex * dst,const Scalar * src,int nfft)
{
if ( nfft&3 ) {
// use generic mode for odd
m_tmpBuf1.resize(nfft);
get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
}else{
int ncfft = nfft>>1;
int ncfft2 = nfft>>2;
Complex * rtw = real_twiddles(ncfft2);
// use optimized mode for even real
fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
Complex dc = dst[0].real() + dst[0].imag();
Complex nyquist = dst[0].real() - dst[0].imag();
int k;
for ( k=1;k <= ncfft2 ; ++k ) {
Complex fpk = dst[k];
Complex fpnk = conj(dst[ncfft-k]);
Complex f1k = fpk + fpnk;
Complex f2k = fpk - fpnk;
Complex tw= f2k * rtw[k-1];
dst[k] = (f1k + tw) * Scalar(.5);
dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
}
dst[0] = dc;
dst[ncfft] = nyquist;
}
}
protected:
typedef ei_kiss_cpx_fft<Scalar> PlanData;
typedef std::map<int,PlanData> PlanMap;
// inverse complex-to-complex
inline
void inv(Complex * dst,const Complex *src,int nfft)
{
get_plan(nfft,true).work(0, dst, src, 1,1);
}
PlanMap m_plans;
std::map<int, std::vector<Complex> > m_realTwiddles;
std::vector<Complex> m_tmpBuf;
inline
int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
inline
PlanData & get_plan(int nfft,bool inverse)
{
// TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
if ( pd.m_twiddles.size() == 0 ) {
pd.make_twiddles(nfft,inverse);
pd.factorize(nfft);
// half-complex to scalar
inline
void inv( Scalar * dst,const Complex * src,int nfft)
{
if (nfft&3) {
m_tmpBuf1.resize(nfft);
m_tmpBuf2.resize(nfft);
std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
for (int k=1;k<(nfft>>1)+1;++k)
m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
for (int k=0;k<nfft;++k)
dst[k] = m_tmpBuf2[k].real();
}else{
// optimized version for multiple of 4
int ncfft = nfft>>1;
int ncfft2 = nfft>>2;
Complex * rtw = real_twiddles(ncfft2);
m_tmpBuf1.resize(ncfft);
m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
for (int k = 1; k <= ncfft / 2; ++k) {
Complex fk = src[k];
Complex fnkc = conj(src[ncfft-k]);
Complex fek = fk + fnkc;
Complex tmp = fk - fnkc;
Complex fok = tmp * conj(rtw[k-1]);
m_tmpBuf1[k] = fek + fok;
m_tmpBuf1[ncfft-k] = conj(fek - fok);
}
return pd;
get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
}
}
inline
Complex * real_twiddles(int ncfft2)
{
std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
if ( (int)twidref.size() != ncfft2 ) {
twidref.resize(ncfft2);
int ncfft= ncfft2<<1;
Scalar pi = acos( Scalar(-1) );
for (int k=1;k<=ncfft2;++k)
twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
}
return &twidref[0];
}
protected:
typedef ei_kiss_cpx_fft<Scalar> PlanData;
typedef std::map<int,PlanData> PlanMap;
// TODO move scaling up into Eigen::FFT
inline
void scale(Complex *dst,int n,Scalar s)
{
for (int k=0;k<n;++k)
dst[k] *= s;
PlanMap m_plans;
std::map<int, std::vector<Complex> > m_realTwiddles;
std::vector<Complex> m_tmpBuf1;
std::vector<Complex> m_tmpBuf2;
inline
int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
inline
PlanData & get_plan(int nfft,bool inverse)
{
// TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
if ( pd.m_twiddles.size() == 0 ) {
pd.make_twiddles(nfft,inverse);
pd.factorize(nfft);
}
};
return pd;
}
inline
Complex * real_twiddles(int ncfft2)
{
std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
if ( (int)twidref.size() != ncfft2 ) {
twidref.resize(ncfft2);
int ncfft= ncfft2<<1;
Scalar pi = acos( Scalar(-1) );
for (int k=1;k<=ncfft2;++k)
twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
}
return &twidref[0];
}
};
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -26,3 +26,4 @@ if(FFTW_FOUND)
ei_add_test(FFTW "-DEIGEN_FFTW_DEFAULT " "-lfftw3 -lfftw3f -lfftw3l" )
endif(FFTW_FOUND)
ei_add_test(Complex)

View File

@ -0,0 +1,77 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifdef EIGEN_TEST_FUNC
# include "main.h"
#else
# include <iostream>
# define CALL_SUBTEST(x) x
# define VERIFY(x) x
# define test_Complex main
#endif
#include <unsupported/Eigen/Complex>
#include <vector>
using namespace std;
using namespace Eigen;
template <typename T>
void take_std( std::complex<T> * dst, int n )
{
cout << dst[n-1] << endl;
}
template <typename T>
void syntax()
{
// this works fine
Matrix< Complex<T>, 9, 1> a;
std::complex<T> * pa = &a[0];
Complex<T> * pa2 = &a[0];
take_std( pa,9);
// this does not work, but I wish it would
// take_std(&a[0];)
// this does
take_std( (std::complex<T> *)&a[0],9);
// this does not work, but it would be really nice
//vector< Complex<T> > a;
// (on my gcc 4.4.1 )
// std::vector assumes operator& returns a POD pointer
// this works fine
Complex<T> b[9];
std::complex<T> * pb = &b[0]; // this works fine
take_std( pb,9);
}
void test_Complex()
{
CALL_SUBTEST( syntax<float>() );
CALL_SUBTEST( syntax<double>() );
CALL_SUBTEST( syntax<long double>() );
}

View File

@ -101,12 +101,34 @@ void test_scalar_generic(int nfft)
ComplexVector outbuf;
for (int k=0;k<nfft;++k)
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
// make sure it DOESN'T give the right full spectrum answer
// if we've asked for half-spectrum
fft.SetFlag(fft.HalfSpectrum );
fft.fwd( outbuf,inbuf);
VERIFY(outbuf.size() == (nfft>>1)+1);
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
fft.ClearFlag(fft.HalfSpectrum );
fft.fwd( outbuf,inbuf);
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
ScalarVector buf3;
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
// verify that the Unscaled flag takes effect
ComplexVector buf4;
fft.SetFlag(fft.Unscaled);
fft.inv( buf4 , outbuf);
for (int k=0;k<nfft;++k)
buf4[k] *= T(1./nfft);
VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
// verify that ClearFlag works
fft.ClearFlag(fft.Unscaled);
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
}
template <typename T>
@ -136,6 +158,19 @@ void test_complex_generic(int nfft)
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
// verify that the Unscaled flag takes effect
ComplexVector buf4;
fft.SetFlag(fft.Unscaled);
fft.inv( buf4 , outbuf);
for (int k=0;k<nfft;++k)
buf4[k] *= T(1./nfft);
VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
// verify that ClearFlag works
fft.ClearFlag(fft.Unscaled);
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
}
template <typename T>