introduce ei_is_diagonal to check for it
DiagonalCoeffs ---> Diagonal and allow Index to by Dynamic
-> add MatrixBase::diagonal(int) with unittest and doc
Remove matrixL() and matrixU() methods: they were tricky, returning a Part,
and matrixL() was useless for non-square LU. Also they were untested. This is
the occasion to simplify the docs (class_LU.cpp) removing the most confusing part.
I think that it's better to let the user do his own cooking with Part's.
order, one bit for enabling/disabling auto-alignment. If you want to
disable, do:
Matrix<float,4,1,Matrix_DontAlign>
The Matrix_ prefix is the only way I can see to avoid
ambiguity/pollution. The old RowMajor, ColMajor constants are
deprecated, remain for now.
* this prompted several improvements in matrix_storage. ei_aligned_array
renamed to ei_matrix_array and moved there. The %16==0 tests are now
much more centralized in 1 place there.
* unalignedassert test: updated
* update FindEigen2.cmake from KDElibs
* determinant test: use VERIFY_IS_APPROX to fix false positives; add
testing of 1 big matrix
* Matrix: always inherit WithAlignedOperatorNew, regardless of
vectorization or not
* rename ei_alloc_stack to ei_aligned_stack_alloc
* mixingtypes test: disable vectorization as SSE intrinsics don't allow
mixing types and we just get compile errors there.
Derived to MatrixBase.
* the optimization of eval() for Matrix now consists in a partial
specialization of ei_eval, which returns a reference type for Matrix.
No overriding of eval() in Matrix anymore. Consequence: careful,
ei_eval is no longer guaranteed to give a plain matrix type!
For that, use ei_plain_matrix_type, or the PlainMatrixType typedef.
* so lots of changes to adapt to that everywhere. Hope this doesn't
break (too much) MSVC compilation.
* add code examples for the new image() stuff.
* lower a bit the precision for floats in the unit tests as
we were already doing some workarounds in inverse.cpp and we got some
failed tests.
- in matrix-matrix product, static assert on the two scalar types to be the same.
- Similarly in CwiseBinaryOp. POTENTIALLY CONTROVERSIAL: we don't allow anymore binary
ops to take two different scalar types. The functors that we defined take two args
of the same type anyway; also we still allow the return type to be different.
Again the reason is that different scalar types are incompatible with vectorization.
Better have the user realize explicitly what mixing different numeric types costs him
in terms of performance.
See comment in CwiseBinaryOp constructor.
- This allowed to fix a little mistake in test/regression.cpp, mixing float and double
- Remove redundant semicolon (;) after static asserts
* rename Cholesky to LLT
* rename CholeskyWithoutSquareRoot to LDLT
* rename MatrixBase::cholesky() to llt()
* rename MatrixBase::choleskyNoSqrt() to ldlt()
* make {LLT,LDLT}::solve() API consistent with other modules
Note that we are going to keep a source compatibility untill the next beta release.
E.g., the "old" Cholesky* classes, etc are still available for some time.
To be clear, Eigen beta2 should be (hopefully) source compatible with beta1,
and so beta2 will contain all the deprecated API of beta1. Those features marked
as deprecated will be removed in beta3 (or in the final 2.0 if there is no beta 3 !).
Also includes various updated in sparse Cholesky.
* replaced the Flags template parameter of Matrix by StorageOrder
and move it back to the 4th position such that we don't have to
worry about the two Max* template parameters
* extended EIGEN_USING_MATRIX_TYPEDEFS with the ei_* math functions
* remove the cast operators in the Geometry module: they are replaced by constructors
and new operator= in Matrix
* extended the operations supported by Rotation2D
* rewrite in solveTriangular:
- merge the Upper and Lower specializations
- big optimization of the path for row-major triangular matrices
* fix .normalized() so that Random().normalized() works; since the return
type became complicated to write down i just let it return an actual
vector, perhaps not optimal.
* add Sparse/CMakeLists.txt. I suppose that it was intentional that it
didn't have CMakeLists, but in <=2.0 releases I'll just manually remove
Sparse.
- removes much code
- 2.5x faster (even though LU uses complete pivoting contrary to what
inverse used to do!)
- there _were_ numeric stability problems with the partial pivoting
approach of inverse(), with 200x200 matrices inversion failed almost
half of the times (overflow). Now these problems are solved thanks to
complete pivoting.
* remove some useless stuff in LU
*in test/CMakeLists : modify EI_ADD_TEST so that 2nd argument is
additional compiler flags. used to add -O2 to test_product_large so it
doesn't take forever.
not allow to easily get the rank), fix a bug (which could have been
triggered by matrices having coefficients of very different
magnitudes).
Part: add an assert to prevent hard to find bugs
Swap: update comments
Note: in fact, inverse() always uses partial pivoting because the algo
currently used doesn't make sense with complete pivoting. No num
stability issue so far even with size 200x200. If there is any problem
we can of course reimplement inverse on top of LU.