mirror of
https://git.mirrors.martin98.com/https://github.com/infiniflow/ragflow.git
synced 2025-04-22 22:20:07 +08:00
Test APIs and fix bugs (#41)
This commit is contained in:
parent
484e5abc1f
commit
34b2ab3b2f
@ -214,7 +214,7 @@ def retrieval_test():
|
||||
question = req["question"]
|
||||
kb_id = req["kb_id"]
|
||||
doc_ids = req.get("doc_ids", [])
|
||||
similarity_threshold = float(req.get("similarity_threshold", 0.4))
|
||||
similarity_threshold = float(req.get("similarity_threshold", 0.2))
|
||||
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
||||
top = int(req.get("top", 1024))
|
||||
try:
|
||||
|
@ -170,7 +170,7 @@ def chat(dialog, messages, **kwargs):
|
||||
if p["key"] not in kwargs:
|
||||
prompt_config["system"] = prompt_config["system"].replace("{%s}"%p["key"], " ")
|
||||
|
||||
model_config = TenantLLMService.get_api_key(dialog.tenant_id, LLMType.CHAT.value, dialog.llm_id)
|
||||
model_config = TenantLLMService.get_api_key(dialog.tenant_id, dialog.llm_id)
|
||||
if not model_config: raise LookupError("LLM({}) API key not found".format(dialog.llm_id))
|
||||
|
||||
question = messages[-1]["content"]
|
||||
@ -186,10 +186,10 @@ def chat(dialog, messages, **kwargs):
|
||||
kwargs["knowledge"] = "\n".join(knowledges)
|
||||
gen_conf = dialog.llm_setting[dialog.llm_setting_type]
|
||||
msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
|
||||
used_token_count = message_fit_in(msg, int(llm.max_tokens * 0.97))
|
||||
used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
|
||||
if "max_tokens" in gen_conf:
|
||||
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
|
||||
mdl = ChatModel[model_config.llm_factory](model_config["api_key"], dialog.llm_id)
|
||||
mdl = ChatModel[model_config.llm_factory](model_config.api_key, dialog.llm_id)
|
||||
answer = mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
|
||||
|
||||
answer = retrievaler.insert_citations(answer,
|
||||
@ -198,4 +198,6 @@ def chat(dialog, messages, **kwargs):
|
||||
embd_mdl,
|
||||
tkweight=1-dialog.vector_similarity_weight,
|
||||
vtweight=dialog.vector_similarity_weight)
|
||||
for c in kbinfos["chunks"]:
|
||||
if c.get("vector"):del c["vector"]
|
||||
return {"answer": answer, "retrieval": kbinfos}
|
@ -11,7 +11,8 @@
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# limitations under the License
|
||||
#
|
||||
#
|
||||
import base64
|
||||
import pathlib
|
||||
@ -65,7 +66,7 @@ def upload():
|
||||
while MINIO.obj_exist(kb_id, location):
|
||||
location += "_"
|
||||
blob = request.files['file'].read()
|
||||
MINIO.put(kb_id, filename, blob)
|
||||
MINIO.put(kb_id, location, blob)
|
||||
doc = DocumentService.insert({
|
||||
"id": get_uuid(),
|
||||
"kb_id": kb.id,
|
||||
@ -188,7 +189,10 @@ def rm():
|
||||
e, doc = DocumentService.get_by_id(req["doc_id"])
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Document not found!")
|
||||
ELASTICSEARCH.deleteByQuery(Q("match", doc_id=doc.id), idxnm=search.index_name(doc.kb_id))
|
||||
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
||||
if not tenant_id:
|
||||
return get_data_error_result(retmsg="Tenant not found!")
|
||||
ELASTICSEARCH.deleteByQuery(Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
|
||||
|
||||
DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, 0)
|
||||
if not DocumentService.delete_by_id(req["doc_id"]):
|
||||
|
@ -75,7 +75,7 @@ def list():
|
||||
llms = LLMService.get_all()
|
||||
llms = [m.to_dict() for m in llms if m.status == StatusEnum.VALID.value]
|
||||
for m in llms:
|
||||
m["available"] = m.llm_name in mdlnms
|
||||
m["available"] = m["llm_name"] in mdlnms
|
||||
|
||||
res = {}
|
||||
for m in llms:
|
||||
|
@ -469,7 +469,7 @@ class Knowledgebase(DataBaseModel):
|
||||
doc_num = IntegerField(default=0)
|
||||
token_num = IntegerField(default=0)
|
||||
chunk_num = IntegerField(default=0)
|
||||
similarity_threshold = FloatField(default=0.4)
|
||||
similarity_threshold = FloatField(default=0.2)
|
||||
vector_similarity_weight = FloatField(default=0.3)
|
||||
|
||||
parser_id = CharField(max_length=32, null=False, help_text="default parser ID")
|
||||
@ -521,7 +521,7 @@ class Dialog(DataBaseModel):
|
||||
prompt_config = JSONField(null=False, default={"system": "", "prologue": "您好,我是您的助手小樱,长得可爱又善良,can I help you?",
|
||||
"parameters": [], "empty_response": "Sorry! 知识库中未找到相关内容!"})
|
||||
|
||||
similarity_threshold = FloatField(default=0.4)
|
||||
similarity_threshold = FloatField(default=0.2)
|
||||
vector_similarity_weight = FloatField(default=0.3)
|
||||
top_n = IntegerField(default=6)
|
||||
|
||||
|
@ -63,7 +63,7 @@ class TenantLLMService(CommonService):
|
||||
|
||||
model_config = cls.get_api_key(tenant_id, mdlnm)
|
||||
if not model_config: raise LookupError("Model({}) not found".format(mdlnm))
|
||||
model_config = model_config[0].to_dict()
|
||||
model_config = model_config.to_dict()
|
||||
if llm_type == LLMType.EMBEDDING.value:
|
||||
if model_config["llm_factory"] not in EmbeddingModel: return
|
||||
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"])
|
||||
|
@ -143,7 +143,7 @@ def filename_type(filename):
|
||||
if re.match(r".*\.pdf$", filename):
|
||||
return FileType.PDF.value
|
||||
|
||||
if re.match(r".*\.(doc|ppt|yml|xml|htm|json|csv|txt|ini|xsl|wps|rtf|hlp|pages|numbers|key|md)$", filename):
|
||||
if re.match(r".*\.(docx|doc|ppt|yml|xml|htm|json|csv|txt|ini|xsl|wps|rtf|hlp|pages|numbers|key|md)$", filename):
|
||||
return FileType.DOC.value
|
||||
|
||||
if re.match(r".*\.(wav|flac|ape|alac|wavpack|wv|mp3|aac|ogg|vorbis|opus|mp3)$", filename):
|
||||
|
@ -19,31 +19,39 @@ import os
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name):
|
||||
pass
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
|
||||
|
||||
class GptTurbo(Base):
|
||||
def __init__(self):
|
||||
self.client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
|
||||
def __init__(self, key, model_name="gpt-3.5-turbo"):
|
||||
self.client = OpenAI(api_key=key)
|
||||
self.model_name = model_name
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
res = self.client.chat.completions.create(
|
||||
model="gpt-3.5-turbo",
|
||||
model=self.model_name,
|
||||
messages=history,
|
||||
**gen_conf)
|
||||
return res.choices[0].message.content.strip()
|
||||
|
||||
|
||||
from dashscope import Generation
|
||||
class QWenChat(Base):
|
||||
def __init__(self, key, model_name=Generation.Models.qwen_turbo):
|
||||
import dashscope
|
||||
dashscope.api_key = key
|
||||
self.model_name = model_name
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
from http import HTTPStatus
|
||||
from dashscope import Generation
|
||||
# export DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
response = Generation.call(
|
||||
Generation.Models.qwen_turbo,
|
||||
self.model_name,
|
||||
messages=history,
|
||||
result_format='message'
|
||||
)
|
||||
|
@ -28,6 +28,8 @@ class Base(ABC):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
|
||||
def image2base64(self, image):
|
||||
if isinstance(image, bytes):
|
||||
return base64.b64encode(image).decode("utf-8")
|
||||
if isinstance(image, BytesIO):
|
||||
return base64.b64encode(image.getvalue()).decode("utf-8")
|
||||
buffered = BytesIO()
|
||||
@ -59,7 +61,7 @@ class Base(ABC):
|
||||
|
||||
class GptV4(Base):
|
||||
def __init__(self, key, model_name="gpt-4-vision-preview"):
|
||||
self.client = OpenAI(key)
|
||||
self.client = OpenAI(api_key = key)
|
||||
self.model_name = model_name
|
||||
|
||||
def describe(self, image, max_tokens=300):
|
||||
|
@ -187,9 +187,10 @@ class Dealer:
|
||||
if len(t) < 5: continue
|
||||
idx.append(i)
|
||||
pieces_.append(t)
|
||||
es_logger.info("{} => {}".format(answer, pieces_))
|
||||
if not pieces_: return answer
|
||||
|
||||
ans_v = embd_mdl.encode(pieces_)
|
||||
ans_v, c = embd_mdl.encode(pieces_)
|
||||
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
|
||||
len(ans_v[0]), len(chunk_v[0]))
|
||||
|
||||
@ -219,7 +220,7 @@ class Dealer:
|
||||
Dealer.trans2floats(
|
||||
sres.field[i]["q_%d_vec" % len(sres.query_vector)]) for i in sres.ids]
|
||||
if not ins_embd:
|
||||
return []
|
||||
return [], [], []
|
||||
ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ") for i in sres.ids]
|
||||
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
|
||||
ins_embd,
|
||||
@ -235,6 +236,8 @@ class Dealer:
|
||||
|
||||
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
|
||||
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
|
||||
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
|
||||
if not question: return ranks
|
||||
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
|
||||
"question": question, "vector": True,
|
||||
"similarity": similarity_threshold}
|
||||
@ -243,7 +246,7 @@ class Dealer:
|
||||
sim, tsim, vsim = self.rerank(
|
||||
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
|
||||
idx = np.argsort(sim * -1)
|
||||
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
|
||||
|
||||
dim = len(sres.query_vector)
|
||||
start_idx = (page - 1) * page_size
|
||||
for i in idx:
|
||||
|
@ -78,6 +78,7 @@ def chuck_doc(name, binary, cvmdl=None):
|
||||
field = TextChunker.Fields()
|
||||
field.text_chunks = [(txt, binary)]
|
||||
field.table_chunks = []
|
||||
return field
|
||||
|
||||
return TextChunker()(binary)
|
||||
|
||||
@ -161,9 +162,9 @@ def build(row, cvmdl):
|
||||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||||
output_buffer = BytesIO()
|
||||
docs = []
|
||||
md5 = hashlib.md5()
|
||||
for txt, img in obj.text_chunks:
|
||||
d = copy.deepcopy(doc)
|
||||
md5 = hashlib.md5()
|
||||
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
||||
d["_id"] = md5.hexdigest()
|
||||
d["content_ltks"] = huqie.qie(txt)
|
||||
@ -186,6 +187,7 @@ def build(row, cvmdl):
|
||||
for i, txt in enumerate(arr):
|
||||
d = copy.deepcopy(doc)
|
||||
d["content_ltks"] = huqie.qie(txt)
|
||||
md5 = hashlib.md5()
|
||||
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
||||
d["_id"] = md5.hexdigest()
|
||||
if not img:
|
||||
@ -226,9 +228,6 @@ def embedding(docs, mdl):
|
||||
|
||||
|
||||
def main(comm, mod):
|
||||
global model
|
||||
from rag.llm import HuEmbedding
|
||||
model = HuEmbedding()
|
||||
tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm")
|
||||
tm = findMaxTm(tm_fnm)
|
||||
rows = collect(comm, mod, tm)
|
||||
@ -260,13 +259,14 @@ def main(comm, mod):
|
||||
set_progress(r["id"], random.randint(70, 95) / 100.,
|
||||
"Finished embedding! Start to build index!")
|
||||
init_kb(r)
|
||||
chunk_count = len(set([c["_id"] for c in cks]))
|
||||
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
|
||||
if es_r:
|
||||
set_progress(r["id"], -1, "Index failure!")
|
||||
cron_logger.error(str(es_r))
|
||||
else:
|
||||
set_progress(r["id"], 1., "Done!")
|
||||
DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, len(cks), timer()-st_tm)
|
||||
DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, chunk_count, timer()-st_tm)
|
||||
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
|
||||
|
||||
tmf.write(str(r["update_time"]) + "\n")
|
||||
|
Loading…
x
Reference in New Issue
Block a user