Refactor graphrag to remove redis lock (#5828)

### What problem does this PR solve?

Refactor graphrag to remove redis lock

### Type of change

- [x] Refactoring
This commit is contained in:
Zhichang Yu 2025-03-10 15:15:06 +08:00 committed by GitHub
parent 1163e9e409
commit 6ec6ca6971
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 602 additions and 332 deletions

View File

@ -42,16 +42,22 @@ from api.db.init_data import init_web_data
from api.versions import get_ragflow_version
from api.utils import show_configs
from rag.settings import print_rag_settings
from rag.utils.redis_conn import RedisDistributedLock
stop_event = threading.Event()
def update_progress():
redis_lock = RedisDistributedLock("update_progress", timeout=60)
while not stop_event.is_set():
try:
if not redis_lock.acquire():
continue
DocumentService.update_progress()
stop_event.wait(6)
except Exception:
logging.exception("update_progress exception")
finally:
redis_lock.release()
def signal_handler(sig, frame):
logging.info("Received interrupt signal, shutting down...")

View File

@ -93,7 +93,7 @@ class Extractor:
return dict(maybe_nodes), dict(maybe_edges)
async def __call__(
self, chunks: list[tuple[str, str]],
self, doc_id: str, chunks: list[str],
callback: Callable | None = None
):
@ -101,9 +101,9 @@ class Extractor:
start_ts = trio.current_time()
out_results = []
async with trio.open_nursery() as nursery:
for i, (cid, ck) in enumerate(chunks):
for i, ck in enumerate(chunks):
ck = truncate(ck, int(self._llm.max_length*0.8))
nursery.start_soon(lambda: self._process_single_content((cid, ck), i, len(chunks), out_results))
nursery.start_soon(lambda: self._process_single_content((doc_id, ck), i, len(chunks), out_results))
maybe_nodes = defaultdict(list)
maybe_edges = defaultdict(list)
@ -241,10 +241,13 @@ class Extractor:
) -> str:
summary_max_tokens = 512
use_description = truncate(description, summary_max_tokens)
description_list=use_description.split(GRAPH_FIELD_SEP),
if len(description_list) <= 12:
return use_description
prompt_template = SUMMARIZE_DESCRIPTIONS_PROMPT
context_base = dict(
entity_name=entity_or_relation_name,
description_list=use_description.split(GRAPH_FIELD_SEP),
description_list=description_list,
language=self._language,
)
use_prompt = prompt_template.format(**context_base)

View File

@ -15,196 +15,353 @@
#
import json
import logging
from functools import reduce, partial
from functools import partial
import networkx as nx
import trio
from api import settings
from graphrag.light.graph_extractor import GraphExtractor as LightKGExt
from graphrag.general.graph_extractor import GraphExtractor as GeneralKGExt
from graphrag.general.community_reports_extractor import CommunityReportsExtractor
from graphrag.entity_resolution import EntityResolution
from graphrag.general.extractor import Extractor
from graphrag.general.graph_extractor import DEFAULT_ENTITY_TYPES
from graphrag.utils import graph_merge, set_entity, get_relation, set_relation, get_entity, get_graph, set_graph, \
chunk_id, update_nodes_pagerank_nhop_neighbour
from graphrag.utils import (
graph_merge,
set_entity,
get_relation,
set_relation,
get_entity,
get_graph,
set_graph,
chunk_id,
update_nodes_pagerank_nhop_neighbour,
does_graph_contains,
get_graph_doc_ids,
)
from rag.nlp import rag_tokenizer, search
from rag.utils.redis_conn import RedisDistributedLock
from rag.utils.redis_conn import REDIS_CONN
class Dealer:
def __init__(self,
def graphrag_task_set(tenant_id, kb_id, doc_id) -> bool:
key = f"graphrag:{tenant_id}:{kb_id}"
ok = REDIS_CONN.set(key, doc_id, exp=3600 * 24)
if not ok:
raise Exception(f"Faild to set the {key} to {doc_id}")
def graphrag_task_get(tenant_id, kb_id) -> str | None:
key = f"graphrag:{tenant_id}:{kb_id}"
doc_id = REDIS_CONN.get(key)
return doc_id
async def run_graphrag(
row: dict,
language,
with_resolution: bool,
with_community: bool,
chat_model,
embedding_model,
callback,
):
start = trio.current_time()
tenant_id, kb_id, doc_id = row["tenant_id"], str(row["kb_id"]), row["doc_id"]
chunks = []
for d in settings.retrievaler.chunk_list(
doc_id, tenant_id, [kb_id], fields=["content_with_weight", "doc_id"]
):
chunks.append(d["content_with_weight"])
graph, doc_ids = await update_graph(
LightKGExt
if row["parser_config"]["graphrag"]["method"] != "general"
else GeneralKGExt,
tenant_id,
kb_id,
doc_id,
chunks,
language,
row["parser_config"]["graphrag"]["entity_types"],
chat_model,
embedding_model,
callback,
)
if not graph:
return
if with_resolution or with_community:
graphrag_task_set(tenant_id, kb_id, doc_id)
if with_resolution:
await resolve_entities(
graph,
doc_ids,
tenant_id,
kb_id,
doc_id,
chat_model,
embedding_model,
callback,
)
if with_community:
await extract_community(
graph,
doc_ids,
tenant_id,
kb_id,
doc_id,
chat_model,
embedding_model,
callback,
)
now = trio.current_time()
callback(msg=f"GraphRAG for doc {doc_id} done in {now - start:.2f} seconds.")
return
async def update_graph(
extractor: Extractor,
tenant_id: str,
kb_id: str,
llm_bdl,
chunks: list[tuple[str, str]],
doc_id: str,
chunks: list[str],
language,
entity_types=DEFAULT_ENTITY_TYPES,
embed_bdl=None,
callback=None
entity_types,
llm_bdl,
embed_bdl,
callback,
):
self.tenant_id = tenant_id
self.kb_id = kb_id
self.chunks = chunks
self.llm_bdl = llm_bdl
self.embed_bdl = embed_bdl
self.ext = extractor(self.llm_bdl, language=language,
contains = await does_graph_contains(tenant_id, kb_id, doc_id)
if contains:
callback(msg=f"Graph already contains {doc_id}, cancel myself")
return None, None
start = trio.current_time()
ext = extractor(
llm_bdl,
language=language,
entity_types=entity_types,
get_entity=partial(get_entity, tenant_id, kb_id),
set_entity=partial(set_entity, tenant_id, kb_id, self.embed_bdl),
set_entity=partial(set_entity, tenant_id, kb_id, embed_bdl),
get_relation=partial(get_relation, tenant_id, kb_id),
set_relation=partial(set_relation, tenant_id, kb_id, self.embed_bdl)
set_relation=partial(set_relation, tenant_id, kb_id, embed_bdl),
)
self.graph = nx.Graph()
self.callback = callback
async def __call__(self):
docids = list(set([docid for docid, _ in self.chunks]))
ents, rels = await self.ext(self.chunks, self.callback)
ents, rels = await ext(doc_id, chunks, callback)
subgraph = nx.Graph()
for en in ents:
self.graph.add_node(en["entity_name"], entity_type=en["entity_type"])#, description=en["description"])
subgraph.add_node(en["entity_name"], entity_type=en["entity_type"])
for rel in rels:
self.graph.add_edge(
subgraph.add_edge(
rel["src_id"],
rel["tgt_id"],
weight=rel["weight"],
# description=rel["description"]
)
# TODO: infinity doesn't support array search
chunk = {
"content_with_weight": json.dumps(
nx.node_link_data(subgraph, edges="edges"), ensure_ascii=False, indent=2
),
"knowledge_graph_kwd": "subgraph",
"kb_id": kb_id,
"source_id": [doc_id],
"available_int": 0,
"removed_kwd": "N",
}
cid = chunk_id(chunk)
await trio.to_thread.run_sync(
lambda: settings.docStoreConn.insert(
[{"id": cid, **chunk}], search.index_name(tenant_id), kb_id
)
)
now = trio.current_time()
callback(msg=f"generated subgraph for doc {doc_id} in {now - start:.2f} seconds.")
start = now
with RedisDistributedLock(self.kb_id, 60*60):
old_graph, old_doc_ids = get_graph(self.tenant_id, self.kb_id)
while True:
new_graph = subgraph
now_docids = set([doc_id])
old_graph, old_doc_ids = await get_graph(tenant_id, kb_id)
if old_graph is not None:
logging.info("Merge with an exiting graph...................")
self.graph = reduce(graph_merge, [old_graph, self.graph])
update_nodes_pagerank_nhop_neighbour(self.tenant_id, self.kb_id, self.graph, 2)
new_graph = graph_merge(old_graph, subgraph)
await update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, new_graph, 2)
if old_doc_ids:
docids.extend(old_doc_ids)
docids = list(set(docids))
set_graph(self.tenant_id, self.kb_id, self.graph, docids)
for old_doc_id in old_doc_ids:
now_docids.add(old_doc_id)
old_doc_ids2 = await get_graph_doc_ids(tenant_id, kb_id)
delta_doc_ids = set(old_doc_ids2) - set(old_doc_ids)
if delta_doc_ids:
callback(
msg="The global graph has changed during merging, try again"
)
await trio.sleep(1)
continue
break
await set_graph(tenant_id, kb_id, new_graph, list(now_docids))
now = trio.current_time()
callback(
msg=f"merging subgraph for doc {doc_id} into the global graph done in {now - start:.2f} seconds."
)
return new_graph, now_docids
class WithResolution(Dealer):
def __init__(self,
async def resolve_entities(
graph,
doc_ids,
tenant_id: str,
kb_id: str,
doc_id: str,
llm_bdl,
embed_bdl=None,
callback=None
embed_bdl,
callback,
):
self.tenant_id = tenant_id
self.kb_id = kb_id
self.llm_bdl = llm_bdl
self.embed_bdl = embed_bdl
self.callback = callback
async def __call__(self):
with RedisDistributedLock(self.kb_id, 60*60):
self.graph, doc_ids = await trio.to_thread.run_sync(lambda: get_graph(self.tenant_id, self.kb_id))
if not self.graph:
logging.error(f"Faild to fetch the graph. tenant_id:{self.kb_id}, kb_id:{self.kb_id}")
if self.callback:
self.callback(-1, msg="Faild to fetch the graph.")
working_doc_id = graphrag_task_get(tenant_id, kb_id)
if doc_id != working_doc_id:
callback(
msg=f"Another graphrag task of doc_id {working_doc_id} is working on this kb, cancel myself"
)
return
start = trio.current_time()
er = EntityResolution(
llm_bdl,
get_entity=partial(get_entity, tenant_id, kb_id),
set_entity=partial(set_entity, tenant_id, kb_id, embed_bdl),
get_relation=partial(get_relation, tenant_id, kb_id),
set_relation=partial(set_relation, tenant_id, kb_id, embed_bdl),
)
reso = await er(graph)
graph = reso.graph
callback(msg=f"Graph resolution removed {len(reso.removed_entities)} nodes.")
await update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, graph, 2)
callback(msg="Graph resolution updated pagerank.")
if self.callback:
self.callback(msg="Fetch the existing graph.")
er = EntityResolution(self.llm_bdl,
get_entity=partial(get_entity, self.tenant_id, self.kb_id),
set_entity=partial(set_entity, self.tenant_id, self.kb_id, self.embed_bdl),
get_relation=partial(get_relation, self.tenant_id, self.kb_id),
set_relation=partial(set_relation, self.tenant_id, self.kb_id, self.embed_bdl))
reso = await er(self.graph)
self.graph = reso.graph
logging.info("Graph resolution is done. Remove {} nodes.".format(len(reso.removed_entities)))
if self.callback:
self.callback(msg="Graph resolution is done. Remove {} nodes.".format(len(reso.removed_entities)))
await trio.to_thread.run_sync(lambda: update_nodes_pagerank_nhop_neighbour(self.tenant_id, self.kb_id, self.graph, 2))
await trio.to_thread.run_sync(lambda: set_graph(self.tenant_id, self.kb_id, self.graph, doc_ids))
working_doc_id = graphrag_task_get(tenant_id, kb_id)
if doc_id != working_doc_id:
callback(
msg=f"Another graphrag task of doc_id {working_doc_id} is working on this kb, cancel myself"
)
return
await set_graph(tenant_id, kb_id, graph, doc_ids)
await trio.to_thread.run_sync(lambda: settings.docStoreConn.delete({
await trio.to_thread.run_sync(
lambda: settings.docStoreConn.delete(
{
"knowledge_graph_kwd": "relation",
"kb_id": self.kb_id,
"from_entity_kwd": reso.removed_entities
}, search.index_name(self.tenant_id), self.kb_id))
await trio.to_thread.run_sync(lambda: settings.docStoreConn.delete({
"kb_id": kb_id,
"from_entity_kwd": reso.removed_entities,
},
search.index_name(tenant_id),
kb_id,
)
)
await trio.to_thread.run_sync(
lambda: settings.docStoreConn.delete(
{
"knowledge_graph_kwd": "relation",
"kb_id": self.kb_id,
"to_entity_kwd": reso.removed_entities
}, search.index_name(self.tenant_id), self.kb_id))
await trio.to_thread.run_sync(lambda: settings.docStoreConn.delete({
"kb_id": kb_id,
"to_entity_kwd": reso.removed_entities,
},
search.index_name(tenant_id),
kb_id,
)
)
await trio.to_thread.run_sync(
lambda: settings.docStoreConn.delete(
{
"knowledge_graph_kwd": "entity",
"kb_id": self.kb_id,
"entity_kwd": reso.removed_entities
}, search.index_name(self.tenant_id), self.kb_id))
"kb_id": kb_id,
"entity_kwd": reso.removed_entities,
},
search.index_name(tenant_id),
kb_id,
)
)
now = trio.current_time()
callback(msg=f"Graph resolution done in {now - start:.2f}s.")
class WithCommunity(Dealer):
def __init__(self,
async def extract_community(
graph,
doc_ids,
tenant_id: str,
kb_id: str,
doc_id: str,
llm_bdl,
embed_bdl=None,
callback=None
embed_bdl,
callback,
):
self.tenant_id = tenant_id
self.kb_id = kb_id
self.community_structure = None
self.community_reports = None
self.llm_bdl = llm_bdl
self.embed_bdl = embed_bdl
self.callback = callback
async def __call__(self):
with RedisDistributedLock(self.kb_id, 60*60):
self.graph, doc_ids = get_graph(self.tenant_id, self.kb_id)
if not self.graph:
logging.error(f"Faild to fetch the graph. tenant_id:{self.kb_id}, kb_id:{self.kb_id}")
if self.callback:
self.callback(-1, msg="Faild to fetch the graph.")
working_doc_id = graphrag_task_get(tenant_id, kb_id)
if doc_id != working_doc_id:
callback(
msg=f"Another graphrag task of doc_id {working_doc_id} is working on this kb, cancel myself"
)
return
if self.callback:
self.callback(msg="Fetch the existing graph.")
start = trio.current_time()
ext = CommunityReportsExtractor(
llm_bdl,
get_entity=partial(get_entity, tenant_id, kb_id),
set_entity=partial(set_entity, tenant_id, kb_id, embed_bdl),
get_relation=partial(get_relation, tenant_id, kb_id),
set_relation=partial(set_relation, tenant_id, kb_id, embed_bdl),
)
cr = await ext(graph, callback=callback)
community_structure = cr.structured_output
community_reports = cr.output
working_doc_id = graphrag_task_get(tenant_id, kb_id)
if doc_id != working_doc_id:
callback(
msg=f"Another graphrag task of doc_id {working_doc_id} is working on this kb, cancel myself"
)
return
await set_graph(tenant_id, kb_id, graph, doc_ids)
cr = CommunityReportsExtractor(self.llm_bdl,
get_entity=partial(get_entity, self.tenant_id, self.kb_id),
set_entity=partial(set_entity, self.tenant_id, self.kb_id, self.embed_bdl),
get_relation=partial(get_relation, self.tenant_id, self.kb_id),
set_relation=partial(set_relation, self.tenant_id, self.kb_id, self.embed_bdl))
cr = await cr(self.graph, callback=self.callback)
self.community_structure = cr.structured_output
self.community_reports = cr.output
await trio.to_thread.run_sync(lambda: set_graph(self.tenant_id, self.kb_id, self.graph, doc_ids))
if self.callback:
self.callback(msg="Graph community extraction is done. Indexing {} reports.".format(len(cr.structured_output)))
await trio.to_thread.run_sync(lambda: settings.docStoreConn.delete({
"knowledge_graph_kwd": "community_report",
"kb_id": self.kb_id
}, search.index_name(self.tenant_id), self.kb_id))
for stru, rep in zip(self.community_structure, self.community_reports):
now = trio.current_time()
callback(
msg=f"Graph extracted {len(cr.structured_output)} communities in {now - start:.2f}s."
)
start = now
await trio.to_thread.run_sync(
lambda: settings.docStoreConn.delete(
{"knowledge_graph_kwd": "community_report", "kb_id": kb_id},
search.index_name(tenant_id),
kb_id,
)
)
for stru, rep in zip(community_structure, community_reports):
obj = {
"report": rep,
"evidences": "\n".join([f["explanation"] for f in stru["findings"]])
"evidences": "\n".join([f["explanation"] for f in stru["findings"]]),
}
chunk = {
"docnm_kwd": stru["title"],
"title_tks": rag_tokenizer.tokenize(stru["title"]),
"content_with_weight": json.dumps(obj, ensure_ascii=False),
"content_ltks": rag_tokenizer.tokenize(obj["report"] +" "+ obj["evidences"]),
"content_ltks": rag_tokenizer.tokenize(
obj["report"] + " " + obj["evidences"]
),
"knowledge_graph_kwd": "community_report",
"weight_flt": stru["weight"],
"entities_kwd": stru["entities"],
"important_kwd": stru["entities"],
"kb_id": self.kb_id,
"kb_id": kb_id,
"source_id": doc_ids,
"available_int": 0
"available_int": 0,
}
chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(
chunk["content_ltks"]
)
# try:
# ebd, _ = self.embed_bdl.encode([", ".join(community["entities"])])
# ebd, _ = embed_bdl.encode([", ".join(community["entities"])])
# chunk["q_%d_vec" % len(ebd[0])] = ebd[0]
# except Exception as e:
# logging.exception(f"Fail to embed entity relation: {e}")
await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(self.tenant_id)))
await trio.to_thread.run_sync(
lambda: settings.docStoreConn.insert(
[{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id)
)
)
now = trio.current_time()
callback(
msg=f"Graph indexed {len(cr.structured_output)} communities in {now - start:.2f}s."
)
return community_structure, community_reports

View File

@ -16,7 +16,7 @@
import argparse
import json
import logging
import networkx as nx
import trio
@ -26,42 +26,85 @@ from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import TenantService
from graphrag.general.index import WithCommunity, Dealer, WithResolution
from graphrag.light.graph_extractor import GraphExtractor
from rag.utils.redis_conn import RedisDistributedLock
from graphrag.general.graph_extractor import GraphExtractor
from graphrag.general.index import update_graph, with_resolution, with_community
settings.init_settings()
if __name__ == "__main__":
def callback(prog=None, msg="Processing..."):
logging.info(msg)
async def main():
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
parser.add_argument('-d', '--doc_id', default=False, help="Document ID", action='store', required=True)
parser.add_argument(
"-t",
"--tenant_id",
default=False,
help="Tenant ID",
action="store",
required=True,
)
parser.add_argument(
"-d",
"--doc_id",
default=False,
help="Document ID",
action="store",
required=True,
)
args = parser.parse_args()
e, doc = DocumentService.get_by_id(args.doc_id)
if not e:
raise LookupError("Document not found.")
kb_id = doc.kb_id
chunks = [d["content_with_weight"] for d in
settings.retrievaler.chunk_list(args.doc_id, args.tenant_id, [kb_id], max_count=6,
fields=["content_with_weight"])]
chunks = [("x", c) for c in chunks]
RedisDistributedLock.clean_lock(kb_id)
chunks = [
d["content_with_weight"]
for d in settings.retrievaler.chunk_list(
args.doc_id,
args.tenant_id,
[kb_id],
max_count=6,
fields=["content_with_weight"],
)
]
_, tenant = TenantService.get_by_id(args.tenant_id)
llm_bdl = LLMBundle(args.tenant_id, LLMType.CHAT, tenant.llm_id)
_, kb = KnowledgebaseService.get_by_id(kb_id)
embed_bdl = LLMBundle(args.tenant_id, LLMType.EMBEDDING, kb.embd_id)
dealer = Dealer(GraphExtractor, args.tenant_id, kb_id, llm_bdl, chunks, "English", embed_bdl=embed_bdl)
trio.run(dealer())
print(json.dumps(nx.node_link_data(dealer.graph), ensure_ascii=False, indent=2))
graph, doc_ids = await update_graph(
GraphExtractor,
args.tenant_id,
kb_id,
args.doc_id,
chunks,
"English",
llm_bdl,
embed_bdl,
callback,
)
print(json.dumps(nx.node_link_data(graph), ensure_ascii=False, indent=2))
dealer = WithResolution(args.tenant_id, kb_id, llm_bdl, embed_bdl)
trio.run(dealer())
dealer = WithCommunity(args.tenant_id, kb_id, llm_bdl, embed_bdl)
trio.run(dealer())
await with_resolution(
args.tenant_id, kb_id, args.doc_id, llm_bdl, embed_bdl, callback
)
community_structure, community_reports = await with_community(
args.tenant_id, kb_id, args.doc_id, llm_bdl, embed_bdl, callback
)
print("------------------ COMMUNITY REPORT ----------------------\n", dealer.community_reports)
print(json.dumps(dealer.community_structure, ensure_ascii=False, indent=2))
print(
"------------------ COMMUNITY STRUCTURE--------------------\n",
json.dumps(community_structure, ensure_ascii=False, indent=2),
)
print(
"------------------ COMMUNITY REPORTS----------------------\n",
community_reports,
)
if __name__ == "__main__":
trio.run(main)

View File

@ -18,22 +18,42 @@ import argparse
import json
from api import settings
import networkx as nx
import logging
import trio
from api.db import LLMType
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import TenantService
from graphrag.general.index import Dealer
from graphrag.general.index import update_graph
from graphrag.light.graph_extractor import GraphExtractor
from rag.utils.redis_conn import RedisDistributedLock
settings.init_settings()
if __name__ == "__main__":
def callback(prog=None, msg="Processing..."):
logging.info(msg)
async def main():
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
parser.add_argument('-d', '--doc_id', default=False, help="Document ID", action='store', required=True)
parser.add_argument(
"-t",
"--tenant_id",
default=False,
help="Tenant ID",
action="store",
required=True,
)
parser.add_argument(
"-d",
"--doc_id",
default=False,
help="Document ID",
action="store",
required=True,
)
args = parser.parse_args()
e, doc = DocumentService.get_by_id(args.doc_id)
@ -41,18 +61,36 @@ if __name__ == "__main__":
raise LookupError("Document not found.")
kb_id = doc.kb_id
chunks = [d["content_with_weight"] for d in
settings.retrievaler.chunk_list(args.doc_id, args.tenant_id, [kb_id], max_count=6,
fields=["content_with_weight"])]
chunks = [("x", c) for c in chunks]
RedisDistributedLock.clean_lock(kb_id)
chunks = [
d["content_with_weight"]
for d in settings.retrievaler.chunk_list(
args.doc_id,
args.tenant_id,
[kb_id],
max_count=6,
fields=["content_with_weight"],
)
]
_, tenant = TenantService.get_by_id(args.tenant_id)
llm_bdl = LLMBundle(args.tenant_id, LLMType.CHAT, tenant.llm_id)
_, kb = KnowledgebaseService.get_by_id(kb_id)
embed_bdl = LLMBundle(args.tenant_id, LLMType.EMBEDDING, kb.embd_id)
dealer = Dealer(GraphExtractor, args.tenant_id, kb_id, llm_bdl, chunks, "English", embed_bdl=embed_bdl)
graph, doc_ids = await update_graph(
GraphExtractor,
args.tenant_id,
kb_id,
args.doc_id,
chunks,
"English",
llm_bdl,
embed_bdl,
callback,
)
print(json.dumps(nx.node_link_data(dealer.graph), ensure_ascii=False, indent=2))
print(json.dumps(nx.node_link_data(graph), ensure_ascii=False, indent=2))
if __name__ == "__main__":
trio.run(main)

View File

@ -352,25 +352,57 @@ def set_relation(tenant_id, kb_id, embd_mdl, from_ent_name, to_ent_name, meta):
chunk["q_%d_vec" % len(ebd)] = ebd
settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id)
async def does_graph_contains(tenant_id, kb_id, doc_id):
# Get doc_ids of graph
fields = ["source_id"]
condition = {
"knowledge_graph_kwd": ["graph"],
"removed_kwd": "N",
}
res = await trio.to_thread.run_sync(lambda: settings.docStoreConn.search(fields, [], condition, [], OrderByExpr(), 0, 1, search.index_name(tenant_id), [kb_id]))
fields2 = settings.docStoreConn.getFields(res, fields)
graph_doc_ids = set()
for chunk_id in fields2.keys():
graph_doc_ids = set(fields2[chunk_id]["source_id"])
return doc_id in graph_doc_ids
def get_graph(tenant_id, kb_id):
async def get_graph_doc_ids(tenant_id, kb_id) -> list[str]:
conds = {
"fields": ["source_id"],
"removed_kwd": "N",
"size": 1,
"knowledge_graph_kwd": ["graph"]
}
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id]))
doc_ids = []
if res.total == 0:
return doc_ids
for id in res.ids:
doc_ids = res.field[id]["source_id"]
return doc_ids
async def get_graph(tenant_id, kb_id):
conds = {
"fields": ["content_with_weight", "source_id"],
"removed_kwd": "N",
"size": 1,
"knowledge_graph_kwd": ["graph"]
}
res = settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id])
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id]))
if res.total == 0:
return None, []
for id in res.ids:
try:
return json_graph.node_link_graph(json.loads(res.field[id]["content_with_weight"]), edges="edges"), \
res.field[id]["source_id"]
except Exception:
continue
return rebuild_graph(tenant_id, kb_id)
result = await rebuild_graph(tenant_id, kb_id)
return result
def set_graph(tenant_id, kb_id, graph, docids):
async def set_graph(tenant_id, kb_id, graph, docids):
chunk = {
"content_with_weight": json.dumps(nx.node_link_data(graph, edges="edges"), ensure_ascii=False,
indent=2),
@ -380,12 +412,12 @@ def set_graph(tenant_id, kb_id, graph, docids):
"available_int": 0,
"removed_kwd": "N"
}
res = settings.retrievaler.search({"knowledge_graph_kwd": "graph", "size": 1, "fields": []}, search.index_name(tenant_id), [kb_id])
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "graph", "size": 1, "fields": []}, search.index_name(tenant_id), [kb_id]))
if res.ids:
settings.docStoreConn.update({"knowledge_graph_kwd": "graph"}, chunk,
search.index_name(tenant_id), kb_id)
await trio.to_thread.run_sync(lambda: settings.docStoreConn.update({"knowledge_graph_kwd": "graph"}, chunk,
search.index_name(tenant_id), kb_id))
else:
settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id)
await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id))
def is_continuous_subsequence(subseq, seq):
@ -430,7 +462,7 @@ def merge_tuples(list1, list2):
return result
def update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, graph, n_hop):
async def update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, graph, n_hop):
def n_neighbor(id):
nonlocal graph, n_hop
count = 0
@ -460,10 +492,10 @@ def update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, graph, n_hop):
for n, p in pr.items():
graph.nodes[n]["pagerank"] = p
try:
settings.docStoreConn.update({"entity_kwd": n, "kb_id": kb_id},
await trio.to_thread.run_sync(lambda: settings.docStoreConn.update({"entity_kwd": n, "kb_id": kb_id},
{"rank_flt": p,
"n_hop_with_weight": json.dumps(n_neighbor(n), ensure_ascii=False)},
search.index_name(tenant_id), kb_id)
"n_hop_with_weight": json.dumps( (n), ensure_ascii=False)},
search.index_name(tenant_id), kb_id))
except Exception as e:
logging.exception(e)
@ -480,21 +512,21 @@ def update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, graph, n_hop):
"knowledge_graph_kwd": "ty2ents",
"available_int": 0
}
res = settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "size": 1, "fields": []},
search.index_name(tenant_id), [kb_id])
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "size": 1, "fields": []},
search.index_name(tenant_id), [kb_id]))
if res.ids:
settings.docStoreConn.update({"knowledge_graph_kwd": "ty2ents"},
await trio.to_thread.run_sync(lambda: settings.docStoreConn.update({"knowledge_graph_kwd": "ty2ents"},
chunk,
search.index_name(tenant_id), kb_id)
search.index_name(tenant_id), kb_id))
else:
settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id)
await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id))
def get_entity_type2sampels(idxnms, kb_ids: list):
es_res = settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids,
async def get_entity_type2sampels(idxnms, kb_ids: list):
es_res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids,
"size": 10000,
"fields": ["content_with_weight"]},
idxnms, kb_ids)
idxnms, kb_ids))
res = defaultdict(list)
for id in es_res.ids:
@ -522,18 +554,18 @@ def flat_uniq_list(arr, key):
return list(set(res))
def rebuild_graph(tenant_id, kb_id):
async def rebuild_graph(tenant_id, kb_id):
graph = nx.Graph()
src_ids = []
flds = ["entity_kwd", "entity_type_kwd", "from_entity_kwd", "to_entity_kwd", "weight_int", "knowledge_graph_kwd", "source_id"]
bs = 256
for i in range(0, 39*bs, bs):
es_res = settings.docStoreConn.search(flds, [],
es_res = await trio.to_thread.run_sync(lambda: settings.docStoreConn.search(flds, [],
{"kb_id": kb_id, "knowledge_graph_kwd": ["entity", "relation"]},
[],
OrderByExpr(),
i, bs, search.index_name(tenant_id), [kb_id]
)
))
tot = settings.docStoreConn.getTotal(es_res)
if tot == 0:
return None, None

View File

@ -15,18 +15,25 @@
#
import logging
import re
from threading import Lock
import umap
import numpy as np
from sklearn.mixture import GaussianMixture
import trio
from graphrag.utils import get_llm_cache, get_embed_cache, set_embed_cache, set_llm_cache, chat_limiter
from graphrag.utils import (
get_llm_cache,
get_embed_cache,
set_embed_cache,
set_llm_cache,
chat_limiter,
)
from rag.utils import truncate
class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
def __init__(self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1):
def __init__(
self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1
):
self._max_cluster = max_cluster
self._llm_model = llm_model
self._embd_model = embd_model
@ -34,22 +41,24 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
self._prompt = prompt
self._max_token = max_token
def _chat(self, system, history, gen_conf):
async def _chat(self, system, history, gen_conf):
response = get_llm_cache(self._llm_model.llm_name, system, history, gen_conf)
if response:
return response
response = self._llm_model.chat(system, history, gen_conf)
response = await trio.to_thread.run_sync(
lambda: self._llm_model.chat(system, history, gen_conf)
)
response = re.sub(r"<think>.*</think>", "", response, flags=re.DOTALL)
if response.find("**ERROR**") >= 0:
raise Exception(response)
set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf)
return response
def _embedding_encode(self, txt):
async def _embedding_encode(self, txt):
response = get_embed_cache(self._embd_model.llm_name, txt)
if response is not None:
return response
embds, _ = self._embd_model.encode([txt])
embds, _ = await trio.to_thread.run_sync(lambda: self._embd_model.encode([txt]))
if len(embds) < 1 or len(embds[0]) < 1:
raise Exception("Embedding error: ")
embds = embds[0]
@ -74,36 +83,48 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
return []
chunks = [(s, a) for s, a in chunks if s and len(a) > 0]
async def summarize(ck_idx, lock):
async def summarize(ck_idx: list[int]):
nonlocal chunks
try:
texts = [chunks[i][0] for i in ck_idx]
len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts))
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
len_per_chunk = int(
(self._llm_model.max_length - self._max_token) / len(texts)
)
cluster_content = "\n".join(
[truncate(t, max(1, len_per_chunk)) for t in texts]
)
async with chat_limiter:
cnt = await trio.to_thread.run_sync(lambda: self._chat("You're a helpful assistant.",
[{"role": "user",
"content": self._prompt.format(cluster_content=cluster_content)}],
{"temperature": 0.3, "max_tokens": self._max_token}
))
cnt = re.sub("(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "",
cnt)
cnt = await self._chat(
"You're a helpful assistant.",
[
{
"role": "user",
"content": self._prompt.format(
cluster_content=cluster_content
),
}
],
{"temperature": 0.3, "max_tokens": self._max_token},
)
cnt = re.sub(
"(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)",
"",
cnt,
)
logging.debug(f"SUM: {cnt}")
embds, _ = self._embd_model.encode([cnt])
with lock:
chunks.append((cnt, self._embedding_encode(cnt)))
except Exception as e:
logging.exception("summarize got exception")
return e
embds = await self._embedding_encode(cnt)
chunks.append((cnt, embds))
labels = []
lock = Lock()
while end - start > 1:
embeddings = [embd for _, embd in chunks[start:end]]
if len(embeddings) == 2:
await summarize([start, start + 1], lock)
await summarize([start, start + 1])
if callback:
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
callback(
msg="Cluster one layer: {} -> {}".format(
end - start, len(chunks) - end
)
)
labels.extend([0, 0])
layers.append((end, len(chunks)))
start = end
@ -112,7 +133,9 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
n_neighbors = int((len(embeddings) - 1) ** 0.8)
reduced_embeddings = umap.UMAP(
n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings) - 2), metric="cosine"
n_neighbors=max(2, n_neighbors),
n_components=min(12, len(embeddings) - 2),
metric="cosine",
).fit_transform(embeddings)
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
if n_clusters == 1:
@ -127,18 +150,22 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
async with trio.open_nursery() as nursery:
for c in range(n_clusters):
ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c]
if not ck_idx:
continue
assert len(ck_idx) > 0
async with chat_limiter:
nursery.start_soon(lambda: summarize(ck_idx, lock))
nursery.start_soon(lambda: summarize(ck_idx))
assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters)
assert len(chunks) - end == n_clusters, "{} vs. {}".format(
len(chunks) - end, n_clusters
)
labels.extend(lbls)
layers.append((end, len(chunks)))
if callback:
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
callback(
msg="Cluster one layer: {} -> {}".format(
end - start, len(chunks) - end
)
)
start = end
end = len(chunks)
return chunks

View File

@ -20,9 +20,7 @@ import random
import sys
from api.utils.log_utils import initRootLogger, get_project_base_directory
from graphrag.general.index import WithCommunity, WithResolution, Dealer
from graphrag.light.graph_extractor import GraphExtractor as LightKGExt
from graphrag.general.graph_extractor import GraphExtractor as GeneralKGExt
from graphrag.general.index import run_graphrag
from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
from rag.prompts import keyword_extraction, question_proposal, content_tagging
@ -45,6 +43,7 @@ import tracemalloc
import resource
import signal
import trio
import exceptiongroup
import numpy as np
from peewee import DoesNotExist
@ -453,24 +452,6 @@ async def run_raptor(row, chat_mdl, embd_mdl, vector_size, callback=None):
return res, tk_count
async def run_graphrag(row, chat_model, language, embedding_model, callback=None):
chunks = []
for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
fields=["content_with_weight", "doc_id"]):
chunks.append((d["doc_id"], d["content_with_weight"]))
dealer = Dealer(LightKGExt if row["parser_config"]["graphrag"]["method"] != 'general' else GeneralKGExt,
row["tenant_id"],
str(row["kb_id"]),
chat_model,
chunks=chunks,
language=language,
entity_types=row["parser_config"]["graphrag"]["entity_types"],
embed_bdl=embedding_model,
callback=callback)
await dealer()
async def do_handle_task(task):
task_id = task["id"]
task_from_page = task["from_page"]
@ -526,24 +507,10 @@ async def do_handle_task(task):
return
start_ts = timer()
chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
await run_graphrag(task, chat_model, task_language, embedding_model, progress_callback)
progress_callback(prog=1.0, msg="Knowledge Graph basic is done ({:.2f}s)".format(timer() - start_ts))
if graphrag_conf.get("resolution", False):
start_ts = timer()
with_res = WithResolution(
task["tenant_id"], str(task["kb_id"]), chat_model, embedding_model,
progress_callback
)
await with_res()
progress_callback(prog=1.0, msg="Knowledge Graph resolution is done ({:.2f}s)".format(timer() - start_ts))
if graphrag_conf.get("community", False):
start_ts = timer()
with_comm = WithCommunity(
task["tenant_id"], str(task["kb_id"]), chat_model, embedding_model,
progress_callback
)
await with_comm()
progress_callback(prog=1.0, msg="Knowledge Graph community is done ({:.2f}s)".format(timer() - start_ts))
with_resolution = graphrag_conf.get("resolution", False)
with_community = graphrag_conf.get("community", False)
await run_graphrag(task, task_language, with_resolution, with_community, chat_model, embedding_model, progress_callback)
progress_callback(prog=1.0, msg="Knowledge Graph done ({:.2f}s)".format(timer() - start_ts))
return
else:
# Standard chunking methods
@ -622,7 +589,11 @@ async def handle_task():
FAILED_TASKS += 1
CURRENT_TASKS.pop(task["id"], None)
try:
set_progress(task["id"], prog=-1, msg=f"[Exception]: {e}")
err_msg = str(e)
while isinstance(e, exceptiongroup.ExceptionGroup):
e = e.exceptions[0]
err_msg += ' -- ' + str(e)
set_progress(task["id"], prog=-1, msg=f"[Exception]: {err_msg}")
except Exception:
pass
logging.exception(f"handle_task got exception for task {json.dumps(task)}")

View File

@ -16,13 +16,12 @@
import logging
import json
import time
import uuid
import valkey as redis
from rag import settings
from rag.utils import singleton
from valkey.lock import Lock
class RedisMsg:
def __init__(self, consumer, queue_name, group_name, msg_id, message):
@ -281,29 +280,23 @@ REDIS_CONN = RedisDB()
class RedisDistributedLock:
def __init__(self, lock_key, timeout=10):
def __init__(self, lock_key, lock_value=None, timeout=10, blocking_timeout=1):
self.lock_key = lock_key
if lock_value:
self.lock_value = lock_value
else:
self.lock_value = str(uuid.uuid4())
self.timeout = timeout
self.lock = Lock(REDIS_CONN.REDIS, lock_key, timeout=timeout, blocking_timeout=blocking_timeout)
@staticmethod
def clean_lock(lock_key):
REDIS_CONN.REDIS.delete(lock_key)
def acquire(self):
return self.lock.acquire()
def acquire_lock(self):
end_time = time.time() + self.timeout
while time.time() < end_time:
if REDIS_CONN.REDIS.setnx(self.lock_key, self.lock_value):
return True
time.sleep(1)
return False
def release_lock(self):
if REDIS_CONN.REDIS.get(self.lock_key) == self.lock_value:
REDIS_CONN.REDIS.delete(self.lock_key)
def release(self):
return self.lock.release()
def __enter__(self):
self.acquire_lock()
self.acquire()
def __exit__(self, exception_type, exception_value, exception_traceback):
self.release_lock()
self.release()